期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
大数据技术在本科高校贫困生认定中的应用策略研究
1
作者 毛雄建 《中文科技期刊数据库(引文版)教育科学》 2024年第11期0034-0037,共4页
引领高等教育管理新视角的大数据技术,以其强大的技术雄厚建设,肩负起促进应用性本科学府贫困生确定工作的改进任务。这个研究,就是利用大数据技术,打造一套全面性的贫困生辨识模型,一种教育、家庭经济、日常习惯等多元素因素的评估模... 引领高等教育管理新视角的大数据技术,以其强大的技术雄厚建设,肩负起促进应用性本科学府贫困生确定工作的改进任务。这个研究,就是利用大数据技术,打造一套全面性的贫困生辨识模型,一种教育、家庭经济、日常习惯等多元素因素的评估模型。在实际施行时,模型能精准地标定出面临贫困问题的学子们,予以他们针对其情况的经济援助。相较于传统的贫困生指定方式,大数据技术所标注出的贫困生更为精确准确,判决更加公平公正,由此减低了人为主观因素对结果的偏误。同时,借助大数据技术的实时动态监控功能,可以追踪贫困生的学习、生活等状态的变化,及时发现那些之前未受关注的贫困生,防止他们因贫困而沉默,甚至走向辍学。本研究结果为应用型本科高校优化贫困生认定体系,提高其公平性和有效性,推动精准扶贫工作提供了可借鉴的实践路径和理论依据。 展开更多
关键词 应用型本科高校 贫困生认定 系统性识别模型 大数据技术 精准扶贫
下载PDF
Time domain system identification of unknown initial conditions
2
作者 SUNGWen-pei MATZENVernonC. SHIHMing-hsiang 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1035-1044,共10页
System identification is a method for using measured data to create or improve a mathematical model of the object being tested. From the measured data however, noise is noticed at the beginning of the response. One so... System identification is a method for using measured data to create or improve a mathematical model of the object being tested. From the measured data however, noise is noticed at the beginning of the response. One solution to avoid this noise problem is to skip the noisy data and then use the initial conditions as active parameters, to be found by using the system identification process. This paper describes the development of the equations for setting up the initial conditions as active parameters. The simulated data and response data from actual shear buildings were used to prove the accuracy of both the algorithm and the computer program, which include the initial conditions as active parameters. The numerical and experimental model analysis showed that the value of mass, stiffness and frequency were very reasonable and that the computed acceleration and measured acceleration matched very well. 展开更多
关键词 Noise Initial conditions Gauss-Newton Active Parameters
下载PDF
IDENTIFICATION ERROR BOUNDS AND ASYMPTOTIC DISTRIBUTIONS FOR SYSTEMS WITH STRUCTURAL UNCERTAINTIES
3
作者 Gang George YIN Shaobai KAN Le Yi WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第1期22-35,共14页
This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Ide... This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived. 展开更多
关键词 Noise nonlinear model mismatch observation bias SYstem identification unmodeled dynamics.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部