Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system r...Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.展开更多
In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propag...In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).展开更多
In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage hap...In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.展开更多
Dependability analysis is an important step in designing and analyzing safety computer systems and protection systems.Introducing multi-processor and virtual machine increases the system faults' complexity,diversi...Dependability analysis is an important step in designing and analyzing safety computer systems and protection systems.Introducing multi-processor and virtual machine increases the system faults' complexity,diversity and dynamic,in particular for software-induced failures,with an impact on the overall dependability.Moreover,it is very different for safety system to operate successfully at any active phase,since there is a huge difference in failure rate between hardware-induced and softwareinduced failures.To handle these difficulties and achieve accurate dependability evaluation,consistently reflecting the construct it measures,a new formalism derived from dynamic fault graphs(DFG) is developed in this paper.DFG exploits the concept of system event as fault state sequences to represent dynamic behaviors,which allows us to execute probabilistic measures at each timestamp when change occurs.The approach automatically combines the reliability analysis with the system dynamics.In this paper,we describe how to use the proposed methodology drives to the overall system dependability analysis through the phases of modeling,structural discovery and probability analysis,which is also discussed using an example of a virtual computing system.展开更多
Single battery failure will change other batteries' load in a power battery pack. Based on the cumulative failure probability equality principle, this paper considers the relationship between the load and the battery...Single battery failure will change other batteries' load in a power battery pack. Based on the cumulative failure probability equality principle, this paper considers the relationship between the load and the battery life distribution, and constructs a reliability model for the parallel subsystem of the battery pack when a single battery fails, and then compares the lifetime and reliability as a function of load and cell design. The result proves that the k-out-of-n system approaches closed to the parallel subsystem of the power battery pack.展开更多
An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security regi...An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security region(PDSR) of a power system with double fed induction generators(DFIG) can be approximated by one or few hyper-planes in nodal power injection space, transient stability criterion for given configurations of pre-fault, fault-on and post-fault of a power system is to be expressed by certain expressions of linear combination of nodal injection vector and the transient stability probability(TSP) is further obtained with a much more simplified expression than the complex integral. Furthermore, considering uncertainties of nodal injection power including wind power and load, TSP is calculated analytically by Cornish-Fisher expansion, which can provide reliable evaluation results with high accuracy and much less computing time compared with Monte Carlo simulation. TSP and its visualization can further help operators and planners be aware of the degree of stability or instability and find critical components to monitor and reinforce. Test results on the New England 10-generators and 39-buses power system show the method's effectiveness and significance for probabilistic security assessment.展开更多
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.
基金Project(2017JBZ103)supported by the Fundamental Research Funds for the Central Universities,China
文摘In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).
基金Supported by National Science and Technology Pillar Program in the Twelfth Five-Year Plan (No. 2011BAK06B02)National Basic Research Program of China ("973" Program, No. 2012CB026000)
文摘In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.
基金This work was supported in part by National Natural Science Foundation of China under grant No.61272411 and National 973 Basic Research Program of China under grant No.2014CB340600
文摘Dependability analysis is an important step in designing and analyzing safety computer systems and protection systems.Introducing multi-processor and virtual machine increases the system faults' complexity,diversity and dynamic,in particular for software-induced failures,with an impact on the overall dependability.Moreover,it is very different for safety system to operate successfully at any active phase,since there is a huge difference in failure rate between hardware-induced and softwareinduced failures.To handle these difficulties and achieve accurate dependability evaluation,consistently reflecting the construct it measures,a new formalism derived from dynamic fault graphs(DFG) is developed in this paper.DFG exploits the concept of system event as fault state sequences to represent dynamic behaviors,which allows us to execute probabilistic measures at each timestamp when change occurs.The approach automatically combines the reliability analysis with the system dynamics.In this paper,we describe how to use the proposed methodology drives to the overall system dependability analysis through the phases of modeling,structural discovery and probability analysis,which is also discussed using an example of a virtual computing system.
文摘Single battery failure will change other batteries' load in a power battery pack. Based on the cumulative failure probability equality principle, this paper considers the relationship between the load and the battery life distribution, and constructs a reliability model for the parallel subsystem of the battery pack when a single battery fails, and then compares the lifetime and reliability as a function of load and cell design. The result proves that the k-out-of-n system approaches closed to the parallel subsystem of the power battery pack.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB228204)the National Natural Science Foundation of China(Grant No.51407126)Tianjin Natural Science Foundation(Grant No.15JCQNJC07000)
文摘An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security region(PDSR) of a power system with double fed induction generators(DFIG) can be approximated by one or few hyper-planes in nodal power injection space, transient stability criterion for given configurations of pre-fault, fault-on and post-fault of a power system is to be expressed by certain expressions of linear combination of nodal injection vector and the transient stability probability(TSP) is further obtained with a much more simplified expression than the complex integral. Furthermore, considering uncertainties of nodal injection power including wind power and load, TSP is calculated analytically by Cornish-Fisher expansion, which can provide reliable evaluation results with high accuracy and much less computing time compared with Monte Carlo simulation. TSP and its visualization can further help operators and planners be aware of the degree of stability or instability and find critical components to monitor and reinforce. Test results on the New England 10-generators and 39-buses power system show the method's effectiveness and significance for probabilistic security assessment.