To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Bloc...To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Block Code (STBC) transmit scheme. A locally optimal selection criterion is proposed at first. Then, the incremental selection approach is applied, which selects one among the residual available users to maximize the minimum user SINR step by step. Simulation results show that the fast algorithm gains over 90% of the diversity benefit achieved by the exhaustive search selection, and that the fast algorithm has much lower computational burden than the exhaustive search one, for the scenario where the number of all the available users is much greater than that of the selected users.展开更多
文摘To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Block Code (STBC) transmit scheme. A locally optimal selection criterion is proposed at first. Then, the incremental selection approach is applied, which selects one among the residual available users to maximize the minimum user SINR step by step. Simulation results show that the fast algorithm gains over 90% of the diversity benefit achieved by the exhaustive search selection, and that the fast algorithm has much lower computational burden than the exhaustive search one, for the scenario where the number of all the available users is much greater than that of the selected users.