The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into ...The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.展开更多
Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through...Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.展开更多
In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif...In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.展开更多
ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and ...ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and 33 m wide, a total of 3 069 m2, including office area of 60 m2 and aisle area of 107 m2. The fer-mentation bed had an area of 2 902 m2 with length of 88.7 m and width of 27.7 m. lts area accounted for 95% of the total area of sow house. The fermentation mattress had a depth of 80 cm, and had a volume of 2 321 m3, equivalent to 733 t of coconut chaff and rice chaff. On a large fermentation bed, the areas for boars, replacement gilts, pregnant sows, obstetric tables, nursery pigs, etc. were designed. The large-scale sow house with fermentation bed was equipped with the automatic feeding system, automatic sprinkler system, automatic positioning column for preg-nant sows, sows' obstetric table system, fanning wet curtain cooling system, video monitoring system, environmental monitoring (light, temperature, water, humidity, CO2, NH3) and automatic control system. Every farming area was equipped with feeding trough and water trough. The water though was fixed with overflow pipe for removing the extra water. The house could hold 500-head sows. Each sow occu-pied 4.9 m2 of the fermentation bed in average. The designed sow house had a maximum annual output of 10 000 piglets.展开更多
With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the pr...With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the problem of mine cooling technologies at China and abroad and the actual conditions of a coal mine, we developed HEMS (High Temperature Exchange Machinery System) with inrushing mine water as the source of cold energy. Combined with the characteristics of a shortage of inrushing water in the coal mine, we proposed the Sanhejian model of HEMS with its lack of a cold source. The cooling engineer- ing construction, given the present conditions in the Sanhejian Coal Mine, consisted of two phases. In phase 1 horizontal water circulation was used as cold energy, while phase II was the geothermal utiliza- tion project. For the key equipment of HEMS-PT or HEMS-T, we provided the operational principle from theory and an actual application. Finally, we analyzed the operational effect of HEMS. After cooling, the temperature at the working face was below 30 ~C, which meets the national regulations. This system opens up new technology to solve the problem of deep mine heat hazards, which makes good sense in energy conservation and pollution reduction, improves the environment and realizes sustainable eco- nomic development.展开更多
Clouds affect the climate by positive and negative feedback. To study these effects at local scale, a radiation station was set up, which used two CM21 Kipp & Zonen pyranometers (one inverted), and two CG1 Kipp & ...Clouds affect the climate by positive and negative feedback. To study these effects at local scale, a radiation station was set up, which used two CM21 Kipp & Zonen pyranometers (one inverted), and two CG1 Kipp & Zonen pyrgeometers (one inverted) in Logan, Utah, USA. The pyranometers and pyrgeometers were ventilated using four CV2 Kipp & Zonen ventilation systems. Ventilation of pyranometers and pyrgeometers prevent dew, frost and snow accumulation, which otherwise would disturb the measurement. Knowing that available energy (Rn) as Rn = Rsi - Rso + Rli - Rio where Rsi and Rso are downward and upward solar radiation, respectively, and Rli and Rio as atmospheric and terrestrial, respectively, the effects of cloudiness were evaluated on a daily and annual basis. The results indicate that for the partly cloudy days of 4 and 5 September, 2007, cloudiness caused less available energy (Rn) in the amounts of-1.83 MJ·m^-2·d^-1 and -3.83 MJ·m^-2·d^-1 on these days, respectively. As shown, due to cloudiness at the experimental site, the net radiation loss was 2,804 - 4,055 = -1,251 MJ·m^-2·d^-1, which indicates a negative feedback due to cloudiness.展开更多
We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFT...We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFTs) and environmental factors affect the spatial pattern of leaf N. The results showed that mean leaf N was 17.7 mg g^-1 for all plant species. The highest and lowest leaf N were found in deciduous-broadleaf and evergreen-conifer species, respectively, and the ranking of leaf N from high to low was: deciduous 〉 evergreen species, broadleaf 〉 coniferous species, shrubs ≈ trees 〉 grasses. For all data pooled, leaf N showed a convex quadratic response to mean annual temperature (MAT), and a negative linear relationship with mean annual precipitation (MAP), but a positive linear relationship with soil nitrogen concentration (Nsoil). These patterns were similar when PFTs were examined individually. Importantly, PFTs, climate and Nsoil, jointly explained 46.1% of the spatial variation in leaf N, of which the independent explanatory powers of PFTs, climate and Nsoil, were 15.6%, 2.3% and 4.7%, respectively. Our findings suggest that leaf N is regulated by climate and Nsoil, mainly via plant species composition. The wide scale empirical relationships developed here are useful for understanding and modeling of the effects of PFTs and environmental factors on leaf N.展开更多
The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the ...The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were: i) to investigate the patterns of soil N content and natural abundance of 15N (δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest, meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and 515N values (0-40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem, while variations of soil ~15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow, lowland meadow, and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm, and then decreased with increasing precipitation across all other ecosystems. Moreover, the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values (0-0 cm) increased with an increase in soil silt and clay contents. Furthermore, a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive (C/N 〈 11) and negative (C/N 〉 11) parts, which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations, being strongly controlled by precipitation and temperature, were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau.展开更多
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(12)1001-04]~~
文摘The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.
基金supported by the key project of National Natural Science Foundation ‘‘Deep Heat Governance and Utilization’’ (Nos.51134005 and 41402273)the Doctoral Fund of Ministry of Education (No. 20130023110021)
文摘Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.
基金Project(2018CXNL08) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.
基金Supported by Chinese Ministry of Science and Technology(2012DFA31120)Natural Science Foundation of China(NSFC)(31370059)+2 种基金948 Project of Chinese Ministry of Agriculture(2011-G25)973 Program Earlier Research Project(2011CB111607)Project of Agriculture Science and Technology Achievement Transformation(2010GB2C400220)
文摘ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and 33 m wide, a total of 3 069 m2, including office area of 60 m2 and aisle area of 107 m2. The fer-mentation bed had an area of 2 902 m2 with length of 88.7 m and width of 27.7 m. lts area accounted for 95% of the total area of sow house. The fermentation mattress had a depth of 80 cm, and had a volume of 2 321 m3, equivalent to 733 t of coconut chaff and rice chaff. On a large fermentation bed, the areas for boars, replacement gilts, pregnant sows, obstetric tables, nursery pigs, etc. were designed. The large-scale sow house with fermentation bed was equipped with the automatic feeding system, automatic sprinkler system, automatic positioning column for preg-nant sows, sows' obstetric table system, fanning wet curtain cooling system, video monitoring system, environmental monitoring (light, temperature, water, humidity, CO2, NH3) and automatic control system. Every farming area was equipped with feeding trough and water trough. The water though was fixed with overflow pipe for removing the extra water. The house could hold 500-head sows. Each sow occu-pied 4.9 m2 of the fermentation bed in average. The designed sow house had a maximum annual output of 10 000 piglets.
基金Financial support for this project, provided by the Key Basic Research Program of China (No.2006CB202200)the National Major Project of Ministry of Education (No.304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT0656)
文摘With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the problem of mine cooling technologies at China and abroad and the actual conditions of a coal mine, we developed HEMS (High Temperature Exchange Machinery System) with inrushing mine water as the source of cold energy. Combined with the characteristics of a shortage of inrushing water in the coal mine, we proposed the Sanhejian model of HEMS with its lack of a cold source. The cooling engineer- ing construction, given the present conditions in the Sanhejian Coal Mine, consisted of two phases. In phase 1 horizontal water circulation was used as cold energy, while phase II was the geothermal utiliza- tion project. For the key equipment of HEMS-PT or HEMS-T, we provided the operational principle from theory and an actual application. Finally, we analyzed the operational effect of HEMS. After cooling, the temperature at the working face was below 30 ~C, which meets the national regulations. This system opens up new technology to solve the problem of deep mine heat hazards, which makes good sense in energy conservation and pollution reduction, improves the environment and realizes sustainable eco- nomic development.
文摘Clouds affect the climate by positive and negative feedback. To study these effects at local scale, a radiation station was set up, which used two CM21 Kipp & Zonen pyranometers (one inverted), and two CG1 Kipp & Zonen pyrgeometers (one inverted) in Logan, Utah, USA. The pyranometers and pyrgeometers were ventilated using four CV2 Kipp & Zonen ventilation systems. Ventilation of pyranometers and pyrgeometers prevent dew, frost and snow accumulation, which otherwise would disturb the measurement. Knowing that available energy (Rn) as Rn = Rsi - Rso + Rli - Rio where Rsi and Rso are downward and upward solar radiation, respectively, and Rli and Rio as atmospheric and terrestrial, respectively, the effects of cloudiness were evaluated on a daily and annual basis. The results indicate that for the partly cloudy days of 4 and 5 September, 2007, cloudiness caused less available energy (Rn) in the amounts of-1.83 MJ·m^-2·d^-1 and -3.83 MJ·m^-2·d^-1 on these days, respectively. As shown, due to cloudiness at the experimental site, the net radiation loss was 2,804 - 4,055 = -1,251 MJ·m^-2·d^-1, which indicates a negative feedback due to cloudiness.
基金supported by the National Key Research and Development Program (2010CB833504)the CAS Strategic Priority Research Program (XDA05050602)
文摘We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFTs) and environmental factors affect the spatial pattern of leaf N. The results showed that mean leaf N was 17.7 mg g^-1 for all plant species. The highest and lowest leaf N were found in deciduous-broadleaf and evergreen-conifer species, respectively, and the ranking of leaf N from high to low was: deciduous 〉 evergreen species, broadleaf 〉 coniferous species, shrubs ≈ trees 〉 grasses. For all data pooled, leaf N showed a convex quadratic response to mean annual temperature (MAT), and a negative linear relationship with mean annual precipitation (MAP), but a positive linear relationship with soil nitrogen concentration (Nsoil). These patterns were similar when PFTs were examined individually. Importantly, PFTs, climate and Nsoil, jointly explained 46.1% of the spatial variation in leaf N, of which the independent explanatory powers of PFTs, climate and Nsoil, were 15.6%, 2.3% and 4.7%, respectively. Our findings suggest that leaf N is regulated by climate and Nsoil, mainly via plant species composition. The wide scale empirical relationships developed here are useful for understanding and modeling of the effects of PFTs and environmental factors on leaf N.
基金Supported by the National Basic Research Program(973 Program)of China(No.2010CB833503)the Chinese Academy of Sciences for Strategic Priority Research Program(No.XDA05050602)+1 种基金the Key Projects in the National Science and Technology Pillar Program(No.2013BAC03B03)the Open Research Fund of Chinese Academy of Sciences(No.O8R8B161PA)
文摘The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were: i) to investigate the patterns of soil N content and natural abundance of 15N (δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest, meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and 515N values (0-40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem, while variations of soil ~15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow, lowland meadow, and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm, and then decreased with increasing precipitation across all other ecosystems. Moreover, the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values (0-0 cm) increased with an increase in soil silt and clay contents. Furthermore, a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive (C/N 〈 11) and negative (C/N 〉 11) parts, which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations, being strongly controlled by precipitation and temperature, were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau.