以建筑信息模型(building information model,BIM)为出发点,结合某高校综合实验室工程建设项目,研究了BIM技术在建筑设计中的应用。分析了基于BIM技术与权衡负荷判断法的建筑热工系统优化设计方法的可行性;讨论了基于BIM技术的建筑能耗...以建筑信息模型(building information model,BIM)为出发点,结合某高校综合实验室工程建设项目,研究了BIM技术在建筑设计中的应用。分析了基于BIM技术与权衡负荷判断法的建筑热工系统优化设计方法的可行性;讨论了基于BIM技术的建筑能耗模拟存在的问题及BIM技术在建筑热工系统与暖通空调系统设计中的应用;分析了现阶段我国BIM技术应用的发展趋势。展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif...In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.展开更多
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e...The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since co...This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.展开更多
The present paper introduces the concepts of exergy and treats it applications to analysis of the gain in exergy efficiency between one-step and multi-step thermal processes. The analysis, which is carried out with th...The present paper introduces the concepts of exergy and treats it applications to analysis of the gain in exergy efficiency between one-step and multi-step thermal processes. The analysis, which is carried out with the Excel-based SEPE program, is exemplified with the comparison between single-step and two-steps heat pump setup for providing heat to a floor heating system and for domestic hot water. The paper discusses the use of the concept of exergy efficiency as a measure of success for design of a heat pump application and how the use of information on exergy destruction and temperature levels in different parts of the system add a new perspective to the analysis and the evaluation of the system performance. The paper shows how this information can be used to improve the system configuration and also the operation of the system for given boundary conditions. This is especially useful when the energy from the low temperature sources can be utilized at different temperature or quality levels such as for space heating and domestic hot water.展开更多
Michoacan brings 2.1% of national GDP, which is 12.5% to agriculture, Livestock is the fourth activity in economic importance in the State and develops in 43% of the territory (58,643 km:) using 27% of the populati...Michoacan brings 2.1% of national GDP, which is 12.5% to agriculture, Livestock is the fourth activity in economic importance in the State and develops in 43% of the territory (58,643 km:) using 27% of the population economically active. Michoacfin ranks third in national cattle inventory (1,608,523 heads) with fifth place in meat production (145,221 ton/year). The production model is extended cow-breed, subject to season and availability of food (few rains shortage of forage during drought), with 0.60 production of breed/cow/year, and a marked traditionalism in the form of production; also a high dependency to food based on the grazing. The inadequate national public policy expressed in the paternalism has limited the adoption of strategies to contribute to the solution of this problem. Therefore this study objective was to design and validate a strategy to increase the number of cow breeding/cow/year to season reproduction program, based on the use of synthetic progesterone "melengestrol acetate" (MGA) as a technology available, secure, easy to use, low cost and likely to be adoptable to the traditional model of production. Work was done in the dry tropics in the municipalities of Churumuco and Tzitzio, Michoacfin State, Mdxico. Used 133 bovine females with crossbreeding Bos indicus, diagnosed as not pregnant, 6.7 and 6.38 years old respectively for each municipality. Oral doses of 0.05 rag/day/cow of MGA during nine days then exposed to the presence of male. Data were analyzed using analysis of variance of a single way. The results indicate that the delivery rate was 58.33% in Churumuco and 61.86% in Tzitzio. This delivery rate represents an increase of 14%-16% of born per year considering that treated females become pregnant with traditional production system management. We concluded that the MGA is an appropriate strategy to the traditional production of tropical dry in MichoacO, n system that increases the rate of births and is likely to be accepted despite the paternalistic public policy prevailing in the country.展开更多
High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost ...High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost meanwhile it still meets special requirements for pulsed electric fields (PEFs) in food process. The pulse generator utilizes a complex programmable logic device (CPLD) to generate trigger signals. Pulse-frequency, pulse-width and pulse-number are controlled via RS232 bus by a computer. The high voltage pulse generator well suits to the application for fluid food non-thermal effect in pulsed electric fields, for it can increase and decrease by the step length 1.展开更多
文摘以建筑信息模型(building information model,BIM)为出发点,结合某高校综合实验室工程建设项目,研究了BIM技术在建筑设计中的应用。分析了基于BIM技术与权衡负荷判断法的建筑热工系统优化设计方法的可行性;讨论了基于BIM技术的建筑能耗模拟存在的问题及BIM技术在建筑热工系统与暖通空调系统设计中的应用;分析了现阶段我国BIM技术应用的发展趋势。
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
基金Project(2018CXNL08) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.
文摘The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
文摘This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.
文摘The present paper introduces the concepts of exergy and treats it applications to analysis of the gain in exergy efficiency between one-step and multi-step thermal processes. The analysis, which is carried out with the Excel-based SEPE program, is exemplified with the comparison between single-step and two-steps heat pump setup for providing heat to a floor heating system and for domestic hot water. The paper discusses the use of the concept of exergy efficiency as a measure of success for design of a heat pump application and how the use of information on exergy destruction and temperature levels in different parts of the system add a new perspective to the analysis and the evaluation of the system performance. The paper shows how this information can be used to improve the system configuration and also the operation of the system for given boundary conditions. This is especially useful when the energy from the low temperature sources can be utilized at different temperature or quality levels such as for space heating and domestic hot water.
文摘Michoacan brings 2.1% of national GDP, which is 12.5% to agriculture, Livestock is the fourth activity in economic importance in the State and develops in 43% of the territory (58,643 km:) using 27% of the population economically active. Michoacfin ranks third in national cattle inventory (1,608,523 heads) with fifth place in meat production (145,221 ton/year). The production model is extended cow-breed, subject to season and availability of food (few rains shortage of forage during drought), with 0.60 production of breed/cow/year, and a marked traditionalism in the form of production; also a high dependency to food based on the grazing. The inadequate national public policy expressed in the paternalism has limited the adoption of strategies to contribute to the solution of this problem. Therefore this study objective was to design and validate a strategy to increase the number of cow breeding/cow/year to season reproduction program, based on the use of synthetic progesterone "melengestrol acetate" (MGA) as a technology available, secure, easy to use, low cost and likely to be adoptable to the traditional model of production. Work was done in the dry tropics in the municipalities of Churumuco and Tzitzio, Michoacfin State, Mdxico. Used 133 bovine females with crossbreeding Bos indicus, diagnosed as not pregnant, 6.7 and 6.38 years old respectively for each municipality. Oral doses of 0.05 rag/day/cow of MGA during nine days then exposed to the presence of male. Data were analyzed using analysis of variance of a single way. The results indicate that the delivery rate was 58.33% in Churumuco and 61.86% in Tzitzio. This delivery rate represents an increase of 14%-16% of born per year considering that treated females become pregnant with traditional production system management. We concluded that the MGA is an appropriate strategy to the traditional production of tropical dry in MichoacO, n system that increases the rate of births and is likely to be accepted despite the paternalistic public policy prevailing in the country.
文摘High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost meanwhile it still meets special requirements for pulsed electric fields (PEFs) in food process. The pulse generator utilizes a complex programmable logic device (CPLD) to generate trigger signals. Pulse-frequency, pulse-width and pulse-number are controlled via RS232 bus by a computer. The high voltage pulse generator well suits to the application for fluid food non-thermal effect in pulsed electric fields, for it can increase and decrease by the step length 1.