The archipelagic waters system is stipulated in the United Nations Convention on the Law of the Sea. It is closely related to China's marine legislation and maritime law enforcement. It is not only related to the int...The archipelagic waters system is stipulated in the United Nations Convention on the Law of the Sea. It is closely related to China's marine legislation and maritime law enforcement. It is not only related to the integrity of our country's national sovereignty, but also to the maintenance of our maritime rights and interests. However, there is no comprehensive fundamental law governing the overall situation of marine development in our country, also no relevant legal code on the archipelagic waters system. Therefore, we should learn from the world's marine legislation and practice which the archipelagic waters system was written into China's marine legislation.展开更多
For conventional adaptive control, time-varying parametric uncertainty and unmodeled dynamics are ticklish problems, which will lead to undesirable performance or even instability and nonrobust behavior, respectively....For conventional adaptive control, time-varying parametric uncertainty and unmodeled dynamics are ticklish problems, which will lead to undesirable performance or even instability and nonrobust behavior, respectively. In this study, a class of discrete-time switched systems with unmodeled dynamics is taken into consideration. Moreover, nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper, and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance. For robustness against unmodeled dynamics and uncertainty, robust model reference adaptive control(RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems. Meanwhile, two different switching laws are presented for switched systems and nonlinear systems, respectively. Thereby, the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems. Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes. Furthermore, as to the proposed scheme for nonlinear systems, its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.展开更多
文摘The archipelagic waters system is stipulated in the United Nations Convention on the Law of the Sea. It is closely related to China's marine legislation and maritime law enforcement. It is not only related to the integrity of our country's national sovereignty, but also to the maintenance of our maritime rights and interests. However, there is no comprehensive fundamental law governing the overall situation of marine development in our country, also no relevant legal code on the archipelagic waters system. Therefore, we should learn from the world's marine legislation and practice which the archipelagic waters system was written into China's marine legislation.
基金supported by Deep Exploration Technology and Experimentation Project under Grant No.201311194-04partially supported by the National Natural Science Foundation of China under Grant Nos.61321002 and 61473038+1 种基金Beijing Outstanding Talents Programme under Grant No.2012D009011000003Graduate Teaching/Innovation Funding of Beijing Institute of Technology
文摘For conventional adaptive control, time-varying parametric uncertainty and unmodeled dynamics are ticklish problems, which will lead to undesirable performance or even instability and nonrobust behavior, respectively. In this study, a class of discrete-time switched systems with unmodeled dynamics is taken into consideration. Moreover, nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper, and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance. For robustness against unmodeled dynamics and uncertainty, robust model reference adaptive control(RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems. Meanwhile, two different switching laws are presented for switched systems and nonlinear systems, respectively. Thereby, the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems. Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes. Furthermore, as to the proposed scheme for nonlinear systems, its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.