In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate co...In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders.展开更多
To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerica...To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.展开更多
The elderly represent a growing proportion of the overall population and household's heads in Cameroon. This demographic change has some impact on the economic and social situation of the latter, in particular, the f...The elderly represent a growing proportion of the overall population and household's heads in Cameroon. This demographic change has some impact on the economic and social situation of the latter, in particular, the functioning of the family structure and solidarity between generations. The successive crises (food and financial) coupled with structural adjustment programs have in fact worsened the problems of the elderly, without having for compensation, provided the corresponding benefits for other age groups. This study contributes to the analysis of changes over time in the family support system, especially with regard to household's heads aged in Cameroon. To achieve this, the discussion turns around three questions: (1) what is the extent and nature of the ageing in Cameroon? (2) what are the demographic, economic, and social implications? and (3) what is the impact of economic and social change on intergenerational relationships? The data used come from the Population Census (1976, 1987, and 2005), and the Cameroonian Household Survey of 2007. The gradual deterioration of the support system for the family, especially due to modernization, and the current and future numbers of older should bring more policymakers to meet the specific needs of this group in Cameroon.展开更多
One of the most important causes of the freshwater shortage in estuarine area is the increasing seawater intrusion into the river.To simulate seawater intrusion properly,two important factors should be considered.One ...One of the most important causes of the freshwater shortage in estuarine area is the increasing seawater intrusion into the river.To simulate seawater intrusion properly,two important factors should be considered.One is the bidirectional and time-dependent coupling effects between river discharges and tidal forces.The other is the three-dimensional and stratified structure of dynamic processes involved.However,these two factors have rarely been investigated simultaneously,or they were often simplified in previous researches,especially for the estuary connected with an upstream river network through multiple outlets such as the Pearl River Estuary(PRE).In order to consider these two factors,a numerical modeling system,which couples a one-dimensional river network model with a three-dimensional unstructured-grid Finite-Volume Coastal Ocean Model(FVCOM),has been developed and successfully applied to the simulation of seawater intrusion into rivers emptying into the PRE.By treating the river network with a one-dimensional model,computational efficiency has been improved.With coupling 1D and 3D models,the specification of upstream boundary conditions becomes more convenient.Simulated results are compared with field measured data.Good agreement indicates that the modeling system may correctly capture the physical processes of seawater intrusion into rivers.展开更多
Combining ecological niche modeling with phylogeography has become a popular approach to understand how historical climate changes have created and maintained population structure. However, methodological choices in g...Combining ecological niche modeling with phylogeography has become a popular approach to understand how historical climate changes have created and maintained population structure. However, methodological choices in geographic extents and environmental layer sets employed in modeling may affect results and interpretations profoundly. Here, we infer range-wide phylogeographic structure and model ecological niches of Cyanoderrna ruficeps, and compare results to previous studies that examined this species across China's Mainland and Taiwan only. Use of dense taxon sampling of closely related species as outgroups question C. ruficeps monophyly. Furthermore, previously unsampled C. ruficeps populations from central Vietnam were closely related to disjunct western populations (Nepal, Tibet, Myanmar, Yunnan), rather than to geographically proximate populations in northern Vietnam and eastern China. Phylogeographic structure is more complex than previously appreciated; niche model projections to Last Glacial Maximum climate scenarios identified larger areas of suitable conditions than previous studies, but potential distributional limits differed markedly between climate models employed and were dependent upon interpretation of non-analogous historical climate scenarios. Previously identified population expansion across central China may result from colonization from refugial distributions during the Last Interglacial, rather than the Last Glacial Maximum, as previously understood [Current Zoology 61 (5): 901-909, 2015].展开更多
It is well known that the cotton aphid is the major pest in cotton fields of Northwest China, and seven-spot ladybird is an important natural enemy among the various possi- ble natural enemies of cotton aphid. In orde...It is well known that the cotton aphid is the major pest in cotton fields of Northwest China, and seven-spot ladybird is an important natural enemy among the various possi- ble natural enemies of cotton aphid. In order to increase the applications of population dynamics in integrated pest management and control the cotton aphids biologically, we need to understand the population dynamics of cotton aphid and their natural enemies. A delay predator prey system on cotton aphid and seven-spot ladybird beetle are pro- posed in this paper. Based on the comparison theorem and an iterative method, we investigate the global attra^tivity of the equilibrium points which have important bio- logical meanings. Furthermore, some numerical simulations were carried out to illustrateand expand our theoretical results, in which a conjecture to generalize the well-known Theorem 16.4 in H. R. Thiemes book was put forward, which was taken as the open problem. The numerical simulations show coexistence of periodic solution, confirming the theoretical prediction.展开更多
GPR54 is highly expressed in the central nervous system and plays a crucial role in pubertal development. However, GRP54 is also expressed in the immune system, implying possible immunoregulatory functions. Here we in...GPR54 is highly expressed in the central nervous system and plays a crucial role in pubertal development. However, GRP54 is also expressed in the immune system, implying possible immunoregulatory functions. Here we investigated the role of GPR54 in T cell and immune tolerance. GPR54 deficiency led to an enlarged thymus, an increased number of thymocytes, and altered thymic micro-architecture starting around puberty, indicating GPR54 function in T-cell development through its regulatory effect on the gonadal system. However, flow cytometry revealed a significant reduction in the peripheral regulatory T cell population and a moderate decrease in CD4 single-positive thymocytes in prepubertal Gpr54^(-/-) mice. These phenotypes were confirmed in chimeric mice with GPR54 deficient bone marrow-derived cells. In addition, we found elevated T cell activation in peripheral and thymic T cells in Gpr54^(-/-) mice. When intact mice were immunized with myelin oligodendrocyte glycoprotein, a more severe experimental autoimmune encephalomyelitis(EAE) developed in the Gpr54^(-/-) mice. Interestingly, aggravated EAE disease was also manifested in castrated and bone marrow chimeric Gpr54^(-/-) mice compared to the respective wild-type control,suggesting a defect in self-tolerance resulting from GPR54 deletion through a mechanism that bypassed sex hormones. These findings demonstrate a novel role for GPR54 in regulating self-tolerant immunity in a sex hormone independent manner.展开更多
Predator prey model with harvesting is well studied. The role of disease in such system has a great importance and cannot be ignored. In this study we have considered a predator prey model with disease circulating in ...Predator prey model with harvesting is well studied. The role of disease in such system has a great importance and cannot be ignored. In this study we have considered a predator prey model with disease circulating in the predator population only and we have also considered harvesting in the prey and in the susceptible predator. We have studied the local stability, Hopf bifurcation of the model system around the equilibria. We have derived the ecological and the disease basic reproduction numbers and we have observed its importance in the community structure of the model system and in controlling disease propagation in the predator population. We have paid attention to chaotic dynamics for increasing the force of infection in the predator. Chaotic population dynamics can exhibit irregular fluctuations and violent oscillations with extremely small or large population abundances. In this study main objective is to show the role of harvesting in controlling chaotic dynamics. It is observed that reasonable harvesting on the prey and the susceptible predator prevents chaotic dynamics.展开更多
基金supported in part by the US National Institutes of Health (NIH) (EB006433, EY023101, EB008389,and HL117664)the US National Science Foundation (NSF) (CBET1450956, CBET-1264782, and DGE-1069104),to Bin He
文摘In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders.
基金supported by the Open Project of Key Laboratory of Aircraft Environment Control and Life Support,MIIT(No.KLAECLS-E-202001)。
文摘To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.
文摘The elderly represent a growing proportion of the overall population and household's heads in Cameroon. This demographic change has some impact on the economic and social situation of the latter, in particular, the functioning of the family structure and solidarity between generations. The successive crises (food and financial) coupled with structural adjustment programs have in fact worsened the problems of the elderly, without having for compensation, provided the corresponding benefits for other age groups. This study contributes to the analysis of changes over time in the family support system, especially with regard to household's heads aged in Cameroon. To achieve this, the discussion turns around three questions: (1) what is the extent and nature of the ageing in Cameroon? (2) what are the demographic, economic, and social implications? and (3) what is the impact of economic and social change on intergenerational relationships? The data used come from the Population Census (1976, 1987, and 2005), and the Cameroonian Household Survey of 2007. The gradual deterioration of the support system for the family, especially due to modernization, and the current and future numbers of older should bring more policymakers to meet the specific needs of this group in Cameroon.
基金supported by the Non-profit Industry Financial Program from the Ministry of Water Resources of the People’s Republic of China (No 200901032)
文摘One of the most important causes of the freshwater shortage in estuarine area is the increasing seawater intrusion into the river.To simulate seawater intrusion properly,two important factors should be considered.One is the bidirectional and time-dependent coupling effects between river discharges and tidal forces.The other is the three-dimensional and stratified structure of dynamic processes involved.However,these two factors have rarely been investigated simultaneously,or they were often simplified in previous researches,especially for the estuary connected with an upstream river network through multiple outlets such as the Pearl River Estuary(PRE).In order to consider these two factors,a numerical modeling system,which couples a one-dimensional river network model with a three-dimensional unstructured-grid Finite-Volume Coastal Ocean Model(FVCOM),has been developed and successfully applied to the simulation of seawater intrusion into rivers emptying into the PRE.By treating the river network with a one-dimensional model,computational efficiency has been improved.With coupling 1D and 3D models,the specification of upstream boundary conditions becomes more convenient.Simulated results are compared with field measured data.Good agreement indicates that the modeling system may correctly capture the physical processes of seawater intrusion into rivers.
基金We thank Nikki Boggess, who assisted in labwork. Fieldwork in Vietnam was facilitated by Dr. Le Mahn Hung, and supported by the National Geographic Committee for Research and Exploration. Fieldwork in China was supported by the National Science Foundation (DEB-0344430 to ATP). The laboratory portions of this work were supported by the National Science Foundation (DEB-0743576 to RGM). We thank recordists who shared their Stachyris/Cyanoderma recordings on Xeno-canto.
文摘Combining ecological niche modeling with phylogeography has become a popular approach to understand how historical climate changes have created and maintained population structure. However, methodological choices in geographic extents and environmental layer sets employed in modeling may affect results and interpretations profoundly. Here, we infer range-wide phylogeographic structure and model ecological niches of Cyanoderrna ruficeps, and compare results to previous studies that examined this species across China's Mainland and Taiwan only. Use of dense taxon sampling of closely related species as outgroups question C. ruficeps monophyly. Furthermore, previously unsampled C. ruficeps populations from central Vietnam were closely related to disjunct western populations (Nepal, Tibet, Myanmar, Yunnan), rather than to geographically proximate populations in northern Vietnam and eastern China. Phylogeographic structure is more complex than previously appreciated; niche model projections to Last Glacial Maximum climate scenarios identified larger areas of suitable conditions than previous studies, but potential distributional limits differed markedly between climate models employed and were dependent upon interpretation of non-analogous historical climate scenarios. Previously identified population expansion across central China may result from colonization from refugial distributions during the Last Interglacial, rather than the Last Glacial Maximum, as previously understood [Current Zoology 61 (5): 901-909, 2015].
基金This research was supported by Startup Project of Doctor Scientific Research of Northwest A&F University (No. Z109021414), National Higher-Education Insti- tution General Research and Development Project (No. 2014YB023), National Natural Science Foundation of China (No. 11461024), the Foundation of Henan Educational Committee (No. 13B110031) and the Fundamental Research Funds for the Universities of Henan Province (No. NSFRF140139).
文摘It is well known that the cotton aphid is the major pest in cotton fields of Northwest China, and seven-spot ladybird is an important natural enemy among the various possi- ble natural enemies of cotton aphid. In order to increase the applications of population dynamics in integrated pest management and control the cotton aphids biologically, we need to understand the population dynamics of cotton aphid and their natural enemies. A delay predator prey system on cotton aphid and seven-spot ladybird beetle are pro- posed in this paper. Based on the comparison theorem and an iterative method, we investigate the global attra^tivity of the equilibrium points which have important bio- logical meanings. Furthermore, some numerical simulations were carried out to illustrateand expand our theoretical results, in which a conjecture to generalize the well-known Theorem 16.4 in H. R. Thiemes book was put forward, which was taken as the open problem. The numerical simulations show coexistence of periodic solution, confirming the theoretical prediction.
基金supported by the National Natural Science Foundation of China(31271468)the Science and Technology Commission of Shanghai Municipality(12ZR1408700)
文摘GPR54 is highly expressed in the central nervous system and plays a crucial role in pubertal development. However, GRP54 is also expressed in the immune system, implying possible immunoregulatory functions. Here we investigated the role of GPR54 in T cell and immune tolerance. GPR54 deficiency led to an enlarged thymus, an increased number of thymocytes, and altered thymic micro-architecture starting around puberty, indicating GPR54 function in T-cell development through its regulatory effect on the gonadal system. However, flow cytometry revealed a significant reduction in the peripheral regulatory T cell population and a moderate decrease in CD4 single-positive thymocytes in prepubertal Gpr54^(-/-) mice. These phenotypes were confirmed in chimeric mice with GPR54 deficient bone marrow-derived cells. In addition, we found elevated T cell activation in peripheral and thymic T cells in Gpr54^(-/-) mice. When intact mice were immunized with myelin oligodendrocyte glycoprotein, a more severe experimental autoimmune encephalomyelitis(EAE) developed in the Gpr54^(-/-) mice. Interestingly, aggravated EAE disease was also manifested in castrated and bone marrow chimeric Gpr54^(-/-) mice compared to the respective wild-type control,suggesting a defect in self-tolerance resulting from GPR54 deletion through a mechanism that bypassed sex hormones. These findings demonstrate a novel role for GPR54 in regulating self-tolerant immunity in a sex hormone independent manner.
文摘Predator prey model with harvesting is well studied. The role of disease in such system has a great importance and cannot be ignored. In this study we have considered a predator prey model with disease circulating in the predator population only and we have also considered harvesting in the prey and in the susceptible predator. We have studied the local stability, Hopf bifurcation of the model system around the equilibria. We have derived the ecological and the disease basic reproduction numbers and we have observed its importance in the community structure of the model system and in controlling disease propagation in the predator population. We have paid attention to chaotic dynamics for increasing the force of infection in the predator. Chaotic population dynamics can exhibit irregular fluctuations and violent oscillations with extremely small or large population abundances. In this study main objective is to show the role of harvesting in controlling chaotic dynamics. It is observed that reasonable harvesting on the prey and the susceptible predator prevents chaotic dynamics.