Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mi...Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important展开更多
Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce...Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.展开更多
To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerica...To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.展开更多
Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for ca...Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for calculating the internal and external force acting on deploying cable were presented. The deployment model suitable for the time-varying length of deploying cable was specified. The free-surface flow fields together with the ship motions were used to calculate dynamic tension in the deploying cable during deployment of the structure. The deployment of deep sea mining system which was a typical subsea working system was employed. Based on lumped mass analysis model and parameters of deep sea mining system, numerical simulations were performed, and dynamic load and dynamic amplification factor(DAF) with different cable parameters, deploying velocities and sea states were obtained. It is shown that cable parameters and amplitudes of ocean waves can significantly influence the dynamic load and DAF, and the time-varying natural period of deploying system is a dominant factor, while the effect of deploying velocity is not obvious.展开更多
Several malfunctions of the shield tunneling machine (STM) caused by structural interference have been encountered in actual tunnel excavation. This paper is focusing on providing an effective method to avoid the st...Several malfunctions of the shield tunneling machine (STM) caused by structural interference have been encountered in actual tunnel excavation. This paper is focusing on providing an effective method to avoid the structural interference based on making the reachable and the required workspaces of the thrust system match each other. The main structure of the thrust mechanism is analyzed, and coordinate systems are built up to describe the pose and workspace of the thrust mechanism. Constraint conditions are derived and the formulation of each constraint condition is carried out to facilitate the analysis of the reachable workspace of the thrust mechanism. Meanwhile, a reachable workspace determination algorithm is introduced based on interval analysis method. The mathematical model for determining the required workspace of the thrust mechanism is presented based on the analysis of the process when the STM excavates along a specific tunnel axis. Two applications are included to show how to avoid these problems by choosing reasonable parameters of the designed tunnel axis and the key structural parameters of the thrust mechanism based on workspace matching.展开更多
The problem of constructing unitary space-time codes with high diversity product has been studied in many prior works.Recently,constructions of parametric fully diverse unitary space-time codes for prime number antenn...The problem of constructing unitary space-time codes with high diversity product has been studied in many prior works.Recently,constructions of parametric fully diverse unitary space-time codes for prime number antennas system have been introduced.In this paper,the authors propose new construction methods based on these constructions.And fully diverse codes of any number antennas are obtained from these constructions.Unitary space-time codes from present constructions are found to have better error performance than many best known ones.展开更多
Aiming at the widespread issues of synergistic performance management, a conceptual model of synergistic performance management system is built. The order parameter of system synergy and the main factors, as well as t...Aiming at the widespread issues of synergistic performance management, a conceptual model of synergistic performance management system is built. The order parameter of system synergy and the main factors, as well as the degree of synergy and the concept of synergistic effect are proposed. An associated structural model of synergistic performance management system is established based on the method of structural equation modeling.展开更多
The problem of constructing a model dimensional parabolic system is considered in this reference adaptive control law for an uncertain 1- article. The controller designed here involves only the plant state but no its ...The problem of constructing a model dimensional parabolic system is considered in this reference adaptive control law for an uncertain 1- article. The controller designed here involves only the plant state but no its derivatives. A priori bounds on the plant's uncertain parameters are used to propose switching laws which serve as an adaptive mechanism. The exponential decay to zero of the state error with any prescribed rate is guaranteed by choosing a controller parameter correspondingly. Numerical studies are also presented to illustrate the applicability of the control law.展开更多
文摘Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important
基金Projects(51708558,51878673,U1734208,52078485,U1934217,U1934209)supported by the National Natural Science Foundation of ChinaProject(2020JJ5740)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(KF2020-03)supported by the Key Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,ChinaProject(2020-Special-02)supported by the Science and Technology Research and Development Program of China Railway Group Limited。
文摘Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.
基金supported by the Open Project of Key Laboratory of Aircraft Environment Control and Life Support,MIIT(No.KLAECLS-E-202001)。
文摘To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.
基金Project(51305463) supported by the National Natural Science Foundation of China
文摘Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for calculating the internal and external force acting on deploying cable were presented. The deployment model suitable for the time-varying length of deploying cable was specified. The free-surface flow fields together with the ship motions were used to calculate dynamic tension in the deploying cable during deployment of the structure. The deployment of deep sea mining system which was a typical subsea working system was employed. Based on lumped mass analysis model and parameters of deep sea mining system, numerical simulations were performed, and dynamic load and dynamic amplification factor(DAF) with different cable parameters, deploying velocities and sea states were obtained. It is shown that cable parameters and amplitudes of ocean waves can significantly influence the dynamic load and DAF, and the time-varying natural period of deploying system is a dominant factor, while the effect of deploying velocity is not obvious.
基金supported by the National Natural Science Foundation of China (Grant No. 51605071)National Basic Research Program of China (Grant No. 2013CB035400)the special grade of the China Postdoctoral Science Foundation (Grant No. 2016T90218)
文摘Several malfunctions of the shield tunneling machine (STM) caused by structural interference have been encountered in actual tunnel excavation. This paper is focusing on providing an effective method to avoid the structural interference based on making the reachable and the required workspaces of the thrust system match each other. The main structure of the thrust mechanism is analyzed, and coordinate systems are built up to describe the pose and workspace of the thrust mechanism. Constraint conditions are derived and the formulation of each constraint condition is carried out to facilitate the analysis of the reachable workspace of the thrust mechanism. Meanwhile, a reachable workspace determination algorithm is introduced based on interval analysis method. The mathematical model for determining the required workspace of the thrust mechanism is presented based on the analysis of the process when the STM excavates along a specific tunnel axis. Two applications are included to show how to avoid these problems by choosing reasonable parameters of the designed tunnel axis and the key structural parameters of the thrust mechanism based on workspace matching.
文摘The problem of constructing unitary space-time codes with high diversity product has been studied in many prior works.Recently,constructions of parametric fully diverse unitary space-time codes for prime number antennas system have been introduced.In this paper,the authors propose new construction methods based on these constructions.And fully diverse codes of any number antennas are obtained from these constructions.Unitary space-time codes from present constructions are found to have better error performance than many best known ones.
文摘Aiming at the widespread issues of synergistic performance management, a conceptual model of synergistic performance management system is built. The order parameter of system synergy and the main factors, as well as the degree of synergy and the concept of synergistic effect are proposed. An associated structural model of synergistic performance management system is established based on the method of structural equation modeling.
基金supported by State Scholarship Fund of China under Grant No.2010602510 from China Scholarship Council(CSC)the National Natural Science Foundation of China under Grant No.11101082+2 种基金the National Natural Science Foundation of China under Grant Nos.10626002,61374088 and 71371024the Program for Innovative Research Team in UIBEthe research foundation of University of International Business and Economics under Grant No.7500010336
文摘The problem of constructing a model dimensional parabolic system is considered in this reference adaptive control law for an uncertain 1- article. The controller designed here involves only the plant state but no its derivatives. A priori bounds on the plant's uncertain parameters are used to propose switching laws which serve as an adaptive mechanism. The exponential decay to zero of the state error with any prescribed rate is guaranteed by choosing a controller parameter correspondingly. Numerical studies are also presented to illustrate the applicability of the control law.