Aimed at that only one form of channel statistic information is utilized in traditional robust precoder schemes: either the channel mean or the transmit antenna correlation in multiple-input multiple-output (MIMO) wir...Aimed at that only one form of channel statistic information is utilized in traditional robust precoder schemes: either the channel mean or the transmit antenna correlation in multiple-input multiple-output (MIMO) wireless system, this paper proposes robust precoder designs which exploit both of statistic information to minimize the equalization mean-square error (MSE) with power constraint. Two different power constraints are studied. Besides the usual sum power constraint over all antennas, the per-antenna power constraint is imposed at transmitter in this paper. Since each antenna has its own amplifier, individual power constraint on each antenna is more realistic. Especially in MIMO-OFDM systems, the Peak-to-Average Ratio (PAR) is one of main practical problems. Simulations show that the proposed schemes have better performance than traditional normalized zero forcing schemes for imperfectly known correlated channel. Moreover, per-antenna power constraint can efficiently decrease the demand of dynamic range of power amplifier on each transmit antenna, especially in MIMO-OFDM systems.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
Micro heat pipe(MHP) is applied to implement the efficient heat transfer of light emitting diode(LED) device.The fabrication of MHP is based on micro-electro-mechanical-system(MEMS) technique,15 micro grooves were etc...Micro heat pipe(MHP) is applied to implement the efficient heat transfer of light emitting diode(LED) device.The fabrication of MHP is based on micro-electro-mechanical-system(MEMS) technique,15 micro grooves were etched on one side of silicon(Si) substrate,which was then packaged with aluminum heat sink to form an MHP.On the other side of Si substrate,three LED chips were fixed by die bonding.Then experiments were performed to study the thermal performance of this LED device.The results show that the LED device with higher filling ratio is better when the input power is 1.0 W; with the increase of input power,the optimum filling ratio changes from 30% to 48%,and the time reaching stable state is reduced; when the input power is equal to 2.5 W,only the LED device with filling ratio of 48% can work normally.So integrating MHP into high-power LED device can implement the effective control of junction temperature.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.60572120)
文摘Aimed at that only one form of channel statistic information is utilized in traditional robust precoder schemes: either the channel mean or the transmit antenna correlation in multiple-input multiple-output (MIMO) wireless system, this paper proposes robust precoder designs which exploit both of statistic information to minimize the equalization mean-square error (MSE) with power constraint. Two different power constraints are studied. Besides the usual sum power constraint over all antennas, the per-antenna power constraint is imposed at transmitter in this paper. Since each antenna has its own amplifier, individual power constraint on each antenna is more realistic. Especially in MIMO-OFDM systems, the Peak-to-Average Ratio (PAR) is one of main practical problems. Simulations show that the proposed schemes have better performance than traditional normalized zero forcing schemes for imperfectly known correlated channel. Moreover, per-antenna power constraint can efficiently decrease the demand of dynamic range of power amplifier on each transmit antenna, especially in MIMO-OFDM systems.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
基金supported by the State Key Development Program for Basic Research of China(No.2011CB013105)
文摘Micro heat pipe(MHP) is applied to implement the efficient heat transfer of light emitting diode(LED) device.The fabrication of MHP is based on micro-electro-mechanical-system(MEMS) technique,15 micro grooves were etched on one side of silicon(Si) substrate,which was then packaged with aluminum heat sink to form an MHP.On the other side of Si substrate,three LED chips were fixed by die bonding.Then experiments were performed to study the thermal performance of this LED device.The results show that the LED device with higher filling ratio is better when the input power is 1.0 W; with the increase of input power,the optimum filling ratio changes from 30% to 48%,and the time reaching stable state is reduced; when the input power is equal to 2.5 W,only the LED device with filling ratio of 48% can work normally.So integrating MHP into high-power LED device can implement the effective control of junction temperature.