The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for tho...The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.展开更多
The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as senso...The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as sensors and actuators. One piezoelectric ceramic is bonded to the structure and provides control input for the structure, while the other piezoelectric ceramic provides the feedback signal. An approach to identification and control is presented. Observation spillover is eliminated by prefiltering the sensor data. A procedure used to determine actuator and sensor location, is discussed based on the modes to be controlled. Finally, the experimental results are presented to verify the proposed method.展开更多
A digital filtering method is presented to compensate the dynamic characteristics of measuring systems.The compensation filter has an infinite impulse response property and is designed by system identification approac...A digital filtering method is presented to compensate the dynamic characteristics of measuring systems.The compensation filter has an infinite impulse response property and is designed by system identification approach from the known input output pairs of the measuring system.Applications of this method to eliminating the distortions of measured waveform in transient pulse measurement are investigated.Experimental results show that the measurement errors caused by the sensor are reduced to be very small after the use of the compensation filter.展开更多
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori...The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.展开更多
文摘The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.
文摘The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as sensors and actuators. One piezoelectric ceramic is bonded to the structure and provides control input for the structure, while the other piezoelectric ceramic provides the feedback signal. An approach to identification and control is presented. Observation spillover is eliminated by prefiltering the sensor data. A procedure used to determine actuator and sensor location, is discussed based on the modes to be controlled. Finally, the experimental results are presented to verify the proposed method.
文摘A digital filtering method is presented to compensate the dynamic characteristics of measuring systems.The compensation filter has an infinite impulse response property and is designed by system identification approach from the known input output pairs of the measuring system.Applications of this method to eliminating the distortions of measured waveform in transient pulse measurement are investigated.Experimental results show that the measurement errors caused by the sensor are reduced to be very small after the use of the compensation filter.
基金Supported by the National Natural Science Foundation of China(61573052,61174128)
文摘The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.