In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensiona...In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensional dynamical systems. The main results show that the SPSA is capable of yielding the high filter performance similar to that produced by classical optimization algorithms, with better performance for non-linear filtering problems as more and more observations are assimilated. The advantage of the SPSA is that at each iteration it requires only two measurements of the objective function to approximate the gradient vector regardless of the dimension of the control vector (or maximally, three measurements if second-order optimization algorithms are used). The SPSA approach is thus free from the need to develop a discrete adjoint of tangent linear model as it is required up to now for solving optimization problems in very high dimensional systems. This technique offers promising perspectives on developing optimal assimilation systems encountered in the field of data assimilation in meteorology and oceanography.展开更多
This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ...This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ARX-Laguerre multimodel, is characterized by the parameter number reduction with a recursive representation. However, a significant reduction of this multimodel is subject to an optimal choice of Laguerre poles characterizing each local linear model ARX-Laguerre. Therefore, the authors propose an optimization algorithm to estimate, from input/output measurements, the optimal values of Laguerre poles. The ARX-Laguerre multimodel as well as the proposed optimization algorithm are tested on a continuous stirred tank reactor system (CSTR). Moreover, the authors take into account a practical validation on an experimental communicating two tank system (CTTS).展开更多
文摘In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensional dynamical systems. The main results show that the SPSA is capable of yielding the high filter performance similar to that produced by classical optimization algorithms, with better performance for non-linear filtering problems as more and more observations are assimilated. The advantage of the SPSA is that at each iteration it requires only two measurements of the objective function to approximate the gradient vector regardless of the dimension of the control vector (or maximally, three measurements if second-order optimization algorithms are used). The SPSA approach is thus free from the need to develop a discrete adjoint of tangent linear model as it is required up to now for solving optimization problems in very high dimensional systems. This technique offers promising perspectives on developing optimal assimilation systems encountered in the field of data assimilation in meteorology and oceanography.
文摘This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ARX-Laguerre multimodel, is characterized by the parameter number reduction with a recursive representation. However, a significant reduction of this multimodel is subject to an optimal choice of Laguerre poles characterizing each local linear model ARX-Laguerre. Therefore, the authors propose an optimization algorithm to estimate, from input/output measurements, the optimal values of Laguerre poles. The ARX-Laguerre multimodel as well as the proposed optimization algorithm are tested on a continuous stirred tank reactor system (CSTR). Moreover, the authors take into account a practical validation on an experimental communicating two tank system (CTTS).