Nowadays, there exist various standards for individual management systems (MSs), at least, one for each stakeholder. New ones will be published. An integrated management system (IMS) aims to integrate some or all ...Nowadays, there exist various standards for individual management systems (MSs), at least, one for each stakeholder. New ones will be published. An integrated management system (IMS) aims to integrate some or all components of the business into one coherent and efficient MS. Maximizing integration is more and more a strategic priority in that it constitutes an opportunity to eliminate and/or reduce potential factors of destruction of value for the organizations and also to be more competitive and consequently promote its sustainable success. A preliminary investigation was conducted on a Portuguese industrial company which, over the years, has been adopting gradually, in whole or in part, individualized management system standards (MSSs). A research, through a questionnaire, was performed with the objective to develop, in a real business environment, an adequate and efficient IMS-QES (quality, environment, and safety) model and to potentiate for the future a generic IMS model to integrate other MSSs. The strategy and research methods have taken into consideration the case study. It was obtained a set of relevant conclusions resulting from the statistical analyses of the responses to the survey. Globally, the investigation results, by themselves, justified and prioritized the conception of a model of development of the IMS-QES and consequent definition and validation of a structure of an IMS-QES model, to be implemented at the small- and medium-sized enterprise (SME) where the investigation was conducted.展开更多
In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm eff...In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.展开更多
The reliability of mining systems is generally low due to their harsh working conditions. Currently, efforts for improving mining system reliability are often made in isolation. This practice could substantially limit...The reliability of mining systems is generally low due to their harsh working conditions. Currently, efforts for improving mining system reliability are often made in isolation. This practice could substantially limit the effectiveness of the efforts on overall reliability improvement of the mining system. To enhance the overall reliability of mining systems, an integrated improvement approach is necessary. In this paper, we developed a framework for integrated mining system reliability improvement to address this issue. In this framework, there are five major components including data integration, business process integration, hardware integration, software integration and analysis/decision integration, but we only focus on the integrated reliability analysis which is important to the analysis/decision integration. The reliability analysis considers the interactions between machines, and the impacts of design, operation, maintenance, automation and working environment on the overall system reliability. These multiple interactions present a big challenge to accurate reliability prediction. In this paper, we for the first time systematically investigated integrated reliability analysis approaches for dealing with this challenge using novel models and methods, including covariate hazard models, intelligent reliability prediction approach and complex system modeling methods. While these models and methods have found some successful applications in other industries, they in general have not been effectively used for the reliability analysis of mining systems. Our study results show that the system integration approach is applicable to mining systems and can be used for developing a computer aided integration system for the implementation of the integrated reliability improvement approach.展开更多
Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy co...Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.展开更多
Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers...Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers was dominantly cultivated for food crops, and very small part of it used for cultivating forage plants. This leads to restriction of smallholder livestock development, because no more land available for forage production. Integrated forage production system by planting forage plants and food crops or trees in the same area becomes a considerable cropping system that widely practiced by the farmers in Indonesia. Some grasses and legumes have morphological advantages overcoming growth condition under shading. These growth characteristics are benefit in designing compatible system components for enhanced productivity in tree-pasture systems. Four potential shade-tolerant creeping forages that were combined with 2 levels of nitrogen application were tested using factorial completely randomized design 3 replicates. The first factor was species of creeping forages (stoloniferous): BH = Brachiaria humidicola, PN = Paspalum notatum, AC - Axonopus compressus and, AP = Arachis pintoi. The second factor was nitrogen (urea) fertilizer: A = without N fertilizer and B = with N fertilizer (300 kg Urea/ha). The observations included the growth rates of plant length, plant length, number of leaves, herbages yield (shoot), root dry weight, senescence, total N-shoot, N-soil and N-uptake. The results showed that growth characteristics and productivity of creeping forage plants was significantly differed by the species. Most species showed an increase in growth trend, except P. notatum. A. compressus significantly showed as the best performance species compared to other, in terms of growth rates, plant length, number of leaves, herbage yield (shoot) and root dry weight, N-uptake and N-shoot. This was lbllowed by B. humidicola, P. notatum, and A. pintoi. Based on previous study, A. compressus found as one of the native species in most tree system. It indicated its superior growth compared to other species tested. However, it is needed further research to observe the compatibility of each species in tree-pasture systems.展开更多
This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence o...This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.展开更多
Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult t...Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.展开更多
Piezoelectric nanowires have attracted much scientific interest in the last few years because of their enhanced piezoelectric coefficients at nanometer scale, with promises of efficient mechanical energy harvesters fo...Piezoelectric nanowires have attracted much scientific interest in the last few years because of their enhanced piezoelectric coefficients at nanometer scale, with promises of efficient mechanical energy harvesters for autonomous integrated systems. This paper presents the design and, for the first time, guideline rules, based on simple analytical expressions, to improve the performance of a mechanical energy harvester integrating vertical ZnO piezoelectric nanowires. Additional simulations were carried out to account more realistically for device geometry. The authors discuss the prospects of such an approach, based on design and material improvement.展开更多
The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applica...The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.展开更多
Currently accelerator control systems adopt distribution architecture and are developed with integration tools,such as EPICS,TANGO and SCADA.The digital controller based on FPGA,DSP is widely used in accelerator contr...Currently accelerator control systems adopt distribution architecture and are developed with integration tools,such as EPICS,TANGO and SCADA.The digital controller based on FPGA,DSP is widely used in accelerator controls and embedded EPICS IOC is a hot point.On the software side,laboratories have built their software develop- ment environments and the open sources Eclips,Abeans serve software development too.The high availability research is a challenge in the control world.The paper describes accelerator controls and progress of correlative technologies.展开更多
A novel electric power steering system(EPS) integrated with active front steering(AFS) is developed.It has functions of both AFS system and EPS system with two actuator units:the AFS actuator unit and the EPS actuator...A novel electric power steering system(EPS) integrated with active front steering(AFS) is developed.It has functions of both AFS system and EPS system with two actuator units:the AFS actuator unit and the EPS actuator unit.The AFS actuator unit controls the displacement transfer behavior of the steering system,and improves the handling stability under adverse road conditions by varying the steering ratio directly related to the speed and road conditions.The EPS actuator unit controls the force transfer behavior of the steering system,and improves the steering portability and road feel of the vehicle.Based on a dynamic model,the mixed H2/H∞ control strategy of the EPS actuator and the active steering intervention control strategy of the AFS actuator are designed.The simulation indicates that the novel EPS system with the designed control strategies has obvious advantages in vehicle handling stability and the driver's road feel over the traditional EPS system,and extends the vehicle's steering performance.展开更多
基金Acknowledgements: This work had the financial support of the Portuguese National Science Foundation (FCT) through the Research Unit, UI 4005, Project Reference PEst-OE/EME/UI4005/2011.
文摘Nowadays, there exist various standards for individual management systems (MSs), at least, one for each stakeholder. New ones will be published. An integrated management system (IMS) aims to integrate some or all components of the business into one coherent and efficient MS. Maximizing integration is more and more a strategic priority in that it constitutes an opportunity to eliminate and/or reduce potential factors of destruction of value for the organizations and also to be more competitive and consequently promote its sustainable success. A preliminary investigation was conducted on a Portuguese industrial company which, over the years, has been adopting gradually, in whole or in part, individualized management system standards (MSSs). A research, through a questionnaire, was performed with the objective to develop, in a real business environment, an adequate and efficient IMS-QES (quality, environment, and safety) model and to potentiate for the future a generic IMS model to integrate other MSSs. The strategy and research methods have taken into consideration the case study. It was obtained a set of relevant conclusions resulting from the statistical analyses of the responses to the survey. Globally, the investigation results, by themselves, justified and prioritized the conception of a model of development of the IMS-QES and consequent definition and validation of a structure of an IMS-QES model, to be implemented at the small- and medium-sized enterprise (SME) where the investigation was conducted.
基金Project(41374018)supported by the National Natural Science Foundation of ChinaProject(J13LN74)supported by the Shandong Province Higher Educational Science and Technology Program,China
文摘In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.
文摘The reliability of mining systems is generally low due to their harsh working conditions. Currently, efforts for improving mining system reliability are often made in isolation. This practice could substantially limit the effectiveness of the efforts on overall reliability improvement of the mining system. To enhance the overall reliability of mining systems, an integrated improvement approach is necessary. In this paper, we developed a framework for integrated mining system reliability improvement to address this issue. In this framework, there are five major components including data integration, business process integration, hardware integration, software integration and analysis/decision integration, but we only focus on the integrated reliability analysis which is important to the analysis/decision integration. The reliability analysis considers the interactions between machines, and the impacts of design, operation, maintenance, automation and working environment on the overall system reliability. These multiple interactions present a big challenge to accurate reliability prediction. In this paper, we for the first time systematically investigated integrated reliability analysis approaches for dealing with this challenge using novel models and methods, including covariate hazard models, intelligent reliability prediction approach and complex system modeling methods. While these models and methods have found some successful applications in other industries, they in general have not been effectively used for the reliability analysis of mining systems. Our study results show that the system integration approach is applicable to mining systems and can be used for developing a computer aided integration system for the implementation of the integrated reliability improvement approach.
基金Supported by the National Natural Science Foundation of China(21176178)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13B02)
文摘Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.
文摘Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers was dominantly cultivated for food crops, and very small part of it used for cultivating forage plants. This leads to restriction of smallholder livestock development, because no more land available for forage production. Integrated forage production system by planting forage plants and food crops or trees in the same area becomes a considerable cropping system that widely practiced by the farmers in Indonesia. Some grasses and legumes have morphological advantages overcoming growth condition under shading. These growth characteristics are benefit in designing compatible system components for enhanced productivity in tree-pasture systems. Four potential shade-tolerant creeping forages that were combined with 2 levels of nitrogen application were tested using factorial completely randomized design 3 replicates. The first factor was species of creeping forages (stoloniferous): BH = Brachiaria humidicola, PN = Paspalum notatum, AC - Axonopus compressus and, AP = Arachis pintoi. The second factor was nitrogen (urea) fertilizer: A = without N fertilizer and B = with N fertilizer (300 kg Urea/ha). The observations included the growth rates of plant length, plant length, number of leaves, herbages yield (shoot), root dry weight, senescence, total N-shoot, N-soil and N-uptake. The results showed that growth characteristics and productivity of creeping forage plants was significantly differed by the species. Most species showed an increase in growth trend, except P. notatum. A. compressus significantly showed as the best performance species compared to other, in terms of growth rates, plant length, number of leaves, herbage yield (shoot) and root dry weight, N-uptake and N-shoot. This was lbllowed by B. humidicola, P. notatum, and A. pintoi. Based on previous study, A. compressus found as one of the native species in most tree system. It indicated its superior growth compared to other species tested. However, it is needed further research to observe the compatibility of each species in tree-pasture systems.
文摘This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.
基金Supported by the National Natural Science Foundation of China (61772159)
文摘Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.
文摘Piezoelectric nanowires have attracted much scientific interest in the last few years because of their enhanced piezoelectric coefficients at nanometer scale, with promises of efficient mechanical energy harvesters for autonomous integrated systems. This paper presents the design and, for the first time, guideline rules, based on simple analytical expressions, to improve the performance of a mechanical energy harvester integrating vertical ZnO piezoelectric nanowires. Additional simulations were carried out to account more realistically for device geometry. The authors discuss the prospects of such an approach, based on design and material improvement.
文摘The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.
文摘Currently accelerator control systems adopt distribution architecture and are developed with integration tools,such as EPICS,TANGO and SCADA.The digital controller based on FPGA,DSP is widely used in accelerator controls and embedded EPICS IOC is a hot point.On the software side,laboratories have built their software develop- ment environments and the open sources Eclips,Abeans serve software development too.The high availability research is a challenge in the control world.The paper describes accelerator controls and progress of correlative technologies.
基金supported by the National Natural Science Foundation of China (Grant Nos 51005115, 51005248)the Science Fund of State Key Laboratory of Automotive Safety and Energy (Grant No KF11201)NUAA Research Funding (Grant No NS2010058)
文摘A novel electric power steering system(EPS) integrated with active front steering(AFS) is developed.It has functions of both AFS system and EPS system with two actuator units:the AFS actuator unit and the EPS actuator unit.The AFS actuator unit controls the displacement transfer behavior of the steering system,and improves the handling stability under adverse road conditions by varying the steering ratio directly related to the speed and road conditions.The EPS actuator unit controls the force transfer behavior of the steering system,and improves the steering portability and road feel of the vehicle.Based on a dynamic model,the mixed H2/H∞ control strategy of the EPS actuator and the active steering intervention control strategy of the AFS actuator are designed.The simulation indicates that the novel EPS system with the designed control strategies has obvious advantages in vehicle handling stability and the driver's road feel over the traditional EPS system,and extends the vehicle's steering performance.