The elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all,geometric nonlinear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand ...The elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all,geometric nonlinear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lateral static wind load will generate additional displacement of long cables,which causes the decrease of supporting rigidity of the whole bridge and the change of dynamic properties. Wind load,being the controlling load in the design of cable-stayed bridge,is a critical problem and needs to be solved. Meanwhile,research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thousand meters,identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore,vortex induced vibration and Reynolds number effect are detailed discussed.展开更多
Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes...Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.展开更多
Gear drives are one of the most common parts in many rotating machinery. If the gear drive runs under lower torque load, nonlinear effects like gear mesh interruption can occur and vibration is accompanied by impact m...Gear drives are one of the most common parts in many rotating machinery. If the gear drive runs under lower torque load, nonlinear effects like gear mesh interruption can occur and vibration is accompanied by impact motions of the gears, This paper presents an original method of the mathematical modelling of gear drive nonlinear vibrations by using the modal synthesis method with degrees of freedom number reduction. The model respects nonlinearities caused by gear mesh interruption, parametric gearing excitation caused by time-varying meshing stiffness and nonlinear contact forces acting between journals of the rolling-element bearings and the outer housing. The nonlinear model is then used for investigation of gear drive vibration, especially for constant gear mesh determination. The theoretical method is applied for investigating of test gear drive nonlinear vibration.展开更多
In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a...In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a semilinear elliptic system involving concave and convex nonlinearities by using the Nehari manifold and the center mass function.展开更多
The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional...The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.展开更多
Nonlinear lumped-parameter force factor Bl(x), stiffness Kms(x) and inductance Le(x) of electrodynamic loudspeakers change frequency responses and generate some nonlinear effects for large stimulus: harmonic and inter...Nonlinear lumped-parameter force factor Bl(x), stiffness Kms(x) and inductance Le(x) of electrodynamic loudspeakers change frequency responses and generate some nonlinear effects for large stimulus: harmonic and intermodulation distortion, DC component in diaphragm displacement, instability of vibration and jumping effects. By modeling the nonlinear system under large-signal conditions, relationship between the nonlinear parameters and large-signal behavior can be revealed and help to provide guidance to diagnose loudspeakers. Agreement between the measured and predicted responses of a real loudspeaker validates the modeling and enables new methods for loudspeaker diagnosis.展开更多
基金Supported by Key Scientific Research Project of Hunan Provincial Department of Education (No. 22A0484)National Natural Science Foundation of China (No. 12104150)。
文摘The elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all,geometric nonlinear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lateral static wind load will generate additional displacement of long cables,which causes the decrease of supporting rigidity of the whole bridge and the change of dynamic properties. Wind load,being the controlling load in the design of cable-stayed bridge,is a critical problem and needs to be solved. Meanwhile,research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thousand meters,identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore,vortex induced vibration and Reynolds number effect are detailed discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.(51079034).
文摘Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.
文摘Gear drives are one of the most common parts in many rotating machinery. If the gear drive runs under lower torque load, nonlinear effects like gear mesh interruption can occur and vibration is accompanied by impact motions of the gears, This paper presents an original method of the mathematical modelling of gear drive nonlinear vibrations by using the modal synthesis method with degrees of freedom number reduction. The model respects nonlinearities caused by gear mesh interruption, parametric gearing excitation caused by time-varying meshing stiffness and nonlinear contact forces acting between journals of the rolling-element bearings and the outer housing. The nonlinear model is then used for investigation of gear drive vibration, especially for constant gear mesh determination. The theoretical method is applied for investigating of test gear drive nonlinear vibration.
文摘In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a semilinear elliptic system involving concave and convex nonlinearities by using the Nehari manifold and the center mass function.
文摘The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.
基金supported by the National Natural Science Foundation of China(Grant No. 11274172)
文摘Nonlinear lumped-parameter force factor Bl(x), stiffness Kms(x) and inductance Le(x) of electrodynamic loudspeakers change frequency responses and generate some nonlinear effects for large stimulus: harmonic and intermodulation distortion, DC component in diaphragm displacement, instability of vibration and jumping effects. By modeling the nonlinear system under large-signal conditions, relationship between the nonlinear parameters and large-signal behavior can be revealed and help to provide guidance to diagnose loudspeakers. Agreement between the measured and predicted responses of a real loudspeaker validates the modeling and enables new methods for loudspeaker diagnosis.