Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐p...Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.展开更多
The microstructure, IR spectrum, as well as rotation dynamics of water molecule in sodium tetrafluoroborate (NaBF4)/water mixture at room temperatures were studied with molecular dynamics simulation. Different conce...The microstructure, IR spectrum, as well as rotation dynamics of water molecule in sodium tetrafluoroborate (NaBF4)/water mixture at room temperatures were studied with molecular dynamics simulation. Different concentrations of water (6.25%, 25.0%, 50.0%, 75.0%, 90.0%, and 99.6%) in NaBF4/water mixture were simulated to understand the structure and dynamics. It was shown that water molecules tend to be isolated from each other in mixtures with more ions than water molecules in both liquids. With increase of the molar fraction of water in the mixture, the rotation bands and the bending bands of water display red shift whereas the O-H stretch bands show blue shift, and the decay of the reorientation correlation function becomes slower. This suggests that the molecules are hindered and their motions are difficult and slow, due to the hydrogen-bond interactions and the inharmonic interactions between the interor intra-molecular modes.展开更多
In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconducto...In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.展开更多
From an inelastic excitation and breakup experiment with a12Be beam at 29 MeV/u,a large4He+8He cluster decay width of 1.1(2)MeV is determined for a state at an excitation energy of 10.3 MeV and with a spin parity of 0...From an inelastic excitation and breakup experiment with a12Be beam at 29 MeV/u,a large4He+8He cluster decay width of 1.1(2)MeV is determined for a state at an excitation energy of 10.3 MeV and with a spin parity of 0+.By using the R-matrix analysis,a cluster spectroscopic factor of 0.53(10)is extracted from the cluster partial width,providing a strong support for the clustering structure in12Be.A specially designed zero-degree telescope played an essential role in the present experiment and has been demonstrated to be a promising tool in future studies of the molecular-like resonances near the cluster separation threshold.展开更多
基金supported by the National Natural Science Foundation of China (21373259, 21301107)the Hundred Talents Project of the Chinese Academy of Sciences, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030102)+2 种基金the Open Funding from Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciencesthe Fundamental Research Fund-ing of Shandong University (2014JC005)the Taishan Scholar Project of Shandong Province (China)~~
文摘Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.
基金The authors are grateful to Professor Jiu-shu Shao at Beijing Normal University for his encourage and help reading the manuscript. We also would like to thank Prof. Jian-min Tao and Guo-bao Li for their kind help. This work was supported by the National Natural Science Foundation of China (No.50564006), the Key program of Natural Science Foundation of Yunnan Provine (No.2005EOOO4Z), the Natural Science Foundation of Yunnan Provine (No.2008E0049M), the Foundation of the Education Department of Yunnan Province (No.07Z40082), and the Foundation of Kunming University of Science and Technology (No.2007-16).
文摘The microstructure, IR spectrum, as well as rotation dynamics of water molecule in sodium tetrafluoroborate (NaBF4)/water mixture at room temperatures were studied with molecular dynamics simulation. Different concentrations of water (6.25%, 25.0%, 50.0%, 75.0%, 90.0%, and 99.6%) in NaBF4/water mixture were simulated to understand the structure and dynamics. It was shown that water molecules tend to be isolated from each other in mixtures with more ions than water molecules in both liquids. With increase of the molar fraction of water in the mixture, the rotation bands and the bending bands of water display red shift whereas the O-H stretch bands show blue shift, and the decay of the reorientation correlation function becomes slower. This suggests that the molecules are hindered and their motions are difficult and slow, due to the hydrogen-bond interactions and the inharmonic interactions between the interor intra-molecular modes.
基金supported by the 1000 Young Talents Programthe National Natural Science Foundation of China (21422507, 21321003, 215032337)Institute of Chemistry, Chinese Academy of Sciences
文摘In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.
基金supported by the National Basic Research Program of China(Grant No.2013CB834402)the National Natural Science Foundation of China(Grant Nos.11035001,11275011,11235001,11320101004 andJ1103206)
文摘From an inelastic excitation and breakup experiment with a12Be beam at 29 MeV/u,a large4He+8He cluster decay width of 1.1(2)MeV is determined for a state at an excitation energy of 10.3 MeV and with a spin parity of 0+.By using the R-matrix analysis,a cluster spectroscopic factor of 0.53(10)is extracted from the cluster partial width,providing a strong support for the clustering structure in12Be.A specially designed zero-degree telescope played an essential role in the present experiment and has been demonstrated to be a promising tool in future studies of the molecular-like resonances near the cluster separation threshold.