Compared with the measureable but limited K isotope variation in geological samples,biological samples have much larger variations in δ^41 values:from-1.3‰ to+1.1‰ relative to the international K standard NIST SR...Compared with the measureable but limited K isotope variation in geological samples,biological samples have much larger variations in δ^41 values:from-1.3‰ to+1.1‰ relative to the international K standard NIST SRM 3141a.Notably,higher plants generally have δ^41 values that are lower than igneous rocks,whereas sea plants(algae)have δ^41 values that are higher than seawater;the range in δ^41K values of plants encompasses the δ^41 values of both igneous rocks and seawater.Plant cells utilize different K uptake mechanisms in response to highand low-K conditions.In a low-K environment,plant cells use energy-consuming ion pumps for active uptake of K;plant cells in high-K environments use non-energy-consuming ion channels.Based on these facts and on K isotope data from sea and land plants,it is hypothesized that the different K uptake mechanisms are accompanied by distinct K isotope fractionation behaviors or vital effects.The enrichment of light K isotopes in terrestrial plants could be attributed to preferential transport of isotopically light K in the energy-consuming active uptake process by K ion pumps in the membranes of plant root cells.On the other hand,the enrichment of heavy K isotopes in algae may be caused by a combination of the lack of K isotope fractionation during K uptake from seawater via ion channels and the preferential efflux of light K isotopes across the cell membrane back to the seawater.The large variation of K isotope compositions in biological samples therefore may reflect the diversity of isotopic vital effects for K in organisms,which implies the great potential of K isotopes in biogeochemical studies.展开更多
An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently ...An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology.展开更多
Based on spontaneous desorption characteristic, the correlation of desorption time and gas content was analyzed and the application of it in production was researched. The desorption of high rank coalbed methane in Qi...Based on spontaneous desorption characteristic, the correlation of desorption time and gas content was analyzed and the application of it in production was researched. The desorption of high rank coalbed methane in Qinshui basin was periodic, and isotope fractionation effect also exists in the process. △δ^13C1 can be used to distinguish the stabilization of coalbed methane wells, associated with desorption rate, the individual well recoverable reserves can be calculated. Economically recoverable time can be predicted according to the logarithmic relationship between desorption gas content per ton and desorption time. The error between predicted result and numerical simulation result is only 1.5%.展开更多
This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ...This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ30Si and δ18O values increase with the increasing of SiO2 content. It means that the fractionation of silicon and oxygen isotopes are affected by the silica content. The positive correlation between CaO/Al2O3 ratios and MgO and that between Si/Al and SiO2 content indicate that clinopyroxene is the predominant mineral phase in our samples. We suppose that the fractionation of silicon and oxygen isotopes are influenced by mineral fractional crystallization. Probably, it is due to their different silicon and oxygen bridges. In this study, the δ30Simean value=-0.17‰±0.17‰ and δ18Omean value= +6.07‰±0.57‰ are higher than normal δ30Si and δ18O values of mantle, and we propose that these igneous rocks in the eastern Manus Basin are affected by hydrothermal alteration.展开更多
Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth'...Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.展开更多
The distillation range analysis and elemental analysis of fractioned direct liquefied oil were conducted. Each fraction of liquefied oil contains some nitrogen compounds. Using the acid extraction method and gas chrom...The distillation range analysis and elemental analysis of fractioned direct liquefied oil were conducted. Each fraction of liquefied oil contains some nitrogen compounds. Using the acid extraction method and gas chromatography/mass spectrometry (GC-MS), the basic nitrogen compounds have been separated and identified. Compared with the nitrogen content of the liquefied oil before and after separation, the basic nitrogen compounds account for more than half of all nitrogen compounds. The basic nitrogen compounds in the light liquefied oil are easily separated, and contain more types of basic nitrogen compounds. The results also show that there are many basic nitrogen compounds in liquefied oil, such as pyrrole, aniline, pyridine, quinoline and so on. However, there are fewer other types of basic nitrogen compounds.展开更多
The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, th...The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, the computed isotopic fractionation factors derived from the absorption cross sections of five heavy isotopomers are in good agreement with the experimental results. Relative to the 14NI4N16O isotopomer, the N2 rotational state distributions for the isotopically nitrogen substituted N2O are found to be entirely shifted to higher rotational states. Similar to its isotopic fractionation factors, the N2 rotational state distributions for the asymmetric isotopomers 14N15N16O and 15N14N16O are found to be observably different.展开更多
Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the ...Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the isotopic mass balance equation,relative contributions of new versus old SOC,and SOC turnover rate in corn fields were evaluated world-wide.However,most previous research had not analyzed corn debris left in the field,instead using an average corn plant δ^(13)C value or a measured value to calculate the proportion of corn-derived SOC,either of which could bias results.This paper carried out a detailed analysis of isotopic fractionation in corn plants and deduced the maximum possible bias of SOC dynamics study.The results show approximately 3‰ isotopic fractionation from top to bottom of the corn leaf.The ^(13)C enrichment sequence in corn plant was tassel﹥stalk or cob﹥root﹥leaves.Individual parts accounting for the total dry mass of corn returned distinct values.Consequently,the average δ^(13)C value of corn does not represent the actual isotopic composition of corn debris.Furthermore,we deduced that the greater the fractionation in corn plant,the greater the possible bias.To alleviate bias of SOC dynamics study,we suggest two measures:analyze isotopic compositions and proportions of each part of the corn and determine which parts of the corn plant are left in the field and incorporated into SOC.展开更多
The stable isotope systems of the transition metals potentially provide constraints on the current and past operation of the biological pump,and on the state of ocean redox in Earth history.Here we focus on two exempl...The stable isotope systems of the transition metals potentially provide constraints on the current and past operation of the biological pump,and on the state of ocean redox in Earth history.Here we focus on two exemplar metals,nickel(Ni)and zinc(Zn).The oceanic dissolved pool of both elements is isotopically heavier than the known inputs,implying an output with light isotope compositions.The modern oceanic cycle of both these elements is dominated by biological uptake into photosynthesised organic matter and output to sediment.It is increasingly clear,however,that such uptake is associated with only very minor isotope fractionation.We suggest that the isotopic balance is instead closed by the sequestration of light isotopes to sulphide in anoxic and organic-rich sediments,so that it is ocean chemistry that controls these isotope systems,and suggesting a different but equally interesting array of questions in Earth history that can be addressed with these systems.展开更多
To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross ...To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross N mineralization rate (GNR) in mineral soils (0-10 cm) from six forest stands located in central Germany were determined and compared with two sampling times: April and November. Additionally, soil density fractionation was conducted for incubated soils (with addition of ^15NH4-N and glucose, 40 days) to observe the sink of added ^15N in different soil fractions. The study showed that Nmic and NNR in most stands differed significantly (P 〈 0.05) between the two sampling times, but not GNR, SAN and SON. In November, no close relationships were found between GNR and other N indices, or between Nrnic, SON, and SAN and forest type. However, in April, GNR was significantly correlated (P 〈 0.05) with Nmic, SAN, and NNR along with Nmlc under beech being significantly higher (P 〈 0.05) than under conifers. Furthermore, density fractionation revealed that the light fraction (LF, 0.063-2 mm, 〉 1.7 gcm^-3) was not correlated with the other N indices. In contrast, results from the incubation study proved that more 15N was incorporated into the heavy fraction (HF 〈 0.063 ram, 〉 1.7 g cm^-3) than into LF, indicaing that more labile N existed in HF than in LF. These findings suggested that attention should be paid to the differences existing in N status between agricultural and forest soils.展开更多
Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils...Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs(La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs(LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs(HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs.The substantial fractions of REEs in soils extracted byoxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile(10 %–30 %), which were similar to the mass fraction of Fe(10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.展开更多
Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied i...Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied in studies on the universal evolution and marine environment and so on. However, only a few researches have been conducted in applying Cd isotopes to trace the source of metallogenic material and the evolution of the ore-forming fluid in a complex mineralization environment, especially in a hydrothermal ore-formation system. We measured the Cd isotopic compositions of sphalerite, galena, and ores from five lead-zinc deposits in SW China, and found that the ~14/11~Cd values varied from -1.53%o to 0.34%0, with a total range of 1.87%o, which is greater than most of measured geological samples. Meanwhile, through contrasting the Cd content with Cd isotopic compositions of different deposits, it may be concluded that different genetic lead-zinc deposits have different Cd content and isotopic compositions, which could be a tool for the studies on the origin of ore deposits. Also, the biominera]iza- tion and crystal fractionation may also result in Cd isotope fractionation. In a word, although the research of Cd isotopes is presently at the preliminary stage (especially in hydrothermal ore-formation system), this study demonstrated that Cd isotopes can give a clue in tracing the evolution of ore-forming fluid and metallogenic environment.展开更多
Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust gro...Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings' daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980 s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous. Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the(de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements(Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes(Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.展开更多
Practically all physical, chemical, and biologi- cal processes can induce mass-dependent fractionation of mercury (Hg) isotopes. A few special processes such as photochemical reduction of Hg(Ⅱ) and photochemical ...Practically all physical, chemical, and biologi- cal processes can induce mass-dependent fractionation of mercury (Hg) isotopes. A few special processes such as photochemical reduction of Hg(Ⅱ) and photochemical degradation of methylmercury (MeHg) can produce mass- independent fractionation (MIF) of odd Hg isotopes (odd- MIF), which had been largely reported in variable natural samples and laboratory experiments, and was thought to be caused by either nuclear volume effect or magnetic isotope effect. Recently, intriguing MIF of even Hg isotopes (even- MIF) had been determined in natural samples mainly related to the atmosphere. Though photo-oxidation in the tropopause (inter-layer between the stratosphere and the troposphere) and neutron capture in space were thought to be the possible processes causing even-MIF, the exact mechanism triggering significant even Hg isotope anomaly is still unclear. Even-MIF could provide useful information about the atmospheric chemistry and related climate changes, and the biogeochemical cycle of Hg.展开更多
The commercial recovery of methane from coal is well established in the coalbed methane(CBM) blocks at the east margin of Ordos Basin, China. CBM forms with various carbon isotopic ratios(δ13CPDB) due to the carbon i...The commercial recovery of methane from coal is well established in the coalbed methane(CBM) blocks at the east margin of Ordos Basin, China. CBM forms with various carbon isotopic ratios(δ13CPDB) due to the carbon isotopic fractionation in biogenical or thermogenical processes. Based on the geologic evolution of coalbed reservoir and studies on the characteristics of δ13 CPDB values distributed spatially(e.g., horizontal CBM well location area, vertical coal burial zone, coal rank, etc.) and temporally(e.g., geologic evolution history), we explored the formation mechanism of carbon isotopic of methane. The relatively low δ13 CPDB values are widely distributed along the research area, indicating a trend of "lighter-heavier-lighter" from north to south. From a combination analysis of the relationship between δ13 CPDB and the relative effects, the essential aspects in determining CBM carbon isotope being light in the study area are: the genesis of secondary biogas in the north; water soluble effects in the active hydrodynamic areas in the middle; desorption fractionation effect promoted by tectonic evolution in the south; and the sudden warming hydrocarbon fractionation accelerated by magmatic event in particular areas(e.g., Linxian).展开更多
Little is known about the stable carbon isotopes of methane (CH4) emitted (δ13CH4elnitted) from permanently flooded rice fields and double rice-cropping fields. The CH4 emission and corresponding (δ13CH4emitted...Little is known about the stable carbon isotopes of methane (CH4) emitted (δ13CH4elnitted) from permanently flooded rice fields and double rice-cropping fields. The CH4 emission and corresponding (δ13CH4emitted under various field managements (mulching, water regime, tillage, and nitrogen (N) fertilization) were simultaneously measured in three typical Chinese rice fields, a permanently flooded rice field in Ziyang City, Sichuan Province, Southwest China, a double-rice cropping field in Yingtan City, Jiangxi Province, Southeast China, and a rice-wheat rotation field in Jurong City, Jiangsu Province, East China, from 2010 to 2012. Results showed different seasonal variations of δ13CH4emitted among the three fields during the rice-growing season. The values of (δ13CH4emitted were negatively correlated with corresponding CH4 emissions in seasonal variation and mean, indicating the importance of CH4 production, oxidation, and transport associated with isotopic fractionation effects to the δ13CH4emitted. Seasonal variations of δ13CH4emltted were slightly impacted by mulching cultivation, tillage, and N application, but highly controlled by drainage. Meanwhile, tillage, N application, and especially mulching cultivation had important effects on seasonal mean CH4 emissions and corresponding δ13CH4emitted with low emissions accompanied by high values of δ13CH4emitted. Seasonal mean values of (δ13CH4emitted from the three fields were similar, mostly ranging from -60‰ to -50‰ which are well in agreement with previously published data. These demonstrated that seasonal variations of (δ13CH4emitted mainly depended on the changes in CH4 emission from rice fields and further indicated the important effects of methanogenic pathways, CH4 oxidation, and CH4 transport associated with isotope fractionation effects influenced by field managements on δ13CH4emitted.展开更多
Elemental sulfur(ES) is one of the intermediates in the inorganic sulfur cycle and thus plays a key role in the fractionation of stable sulfur isotopes in different reservoirs and the marine environment. In this study...Elemental sulfur(ES) is one of the intermediates in the inorganic sulfur cycle and thus plays a key role in the fractionation of stable sulfur isotopes in different reservoirs and the marine environment. In this study, solid ES is discovered in sediments near the Jiulong Methane Reef in the northern South China Sea by scanning electron microscopy and Raman spectroscopy. Combining the morphology and distribution of ES, pyrite concentrations, and sulfur isotopes, we conclude that:(1) solid ES coexists with pyrite microcrystals and sulfide(oxyhydr)oxides as well as clay minerals, and they are mainly distributed on the surface of mineral aggregates;(2) ES mainly occurs within and near the sulfate-methane transition zone(SMTZ) despite little morphological diversity;(3) ES formation might be related to hydrogen sulfide oxidation and is therefore linked with fluctuations in the SMTZ. Within the SMTZ, hydrogen sulfide is produced and pyrite precipitates because of enhanced anaerobic oxidation of methane coupled with dissimilatory sulfate reduction. This enhances the efficiency of the inorganic sulfur cycle and provides favorable conditions for ES formation. The discovery of solid ES in sediments near the Jiulong Methane Reef suggests an important relationship with SMTZ fluctuations that could have implications for the evolution of methane hydrate in the South China Sea.展开更多
基金supported by"1000-talent Program"of China,and National Science Foundation of China(Grant No.41622301)to WL
文摘Compared with the measureable but limited K isotope variation in geological samples,biological samples have much larger variations in δ^41 values:from-1.3‰ to+1.1‰ relative to the international K standard NIST SRM 3141a.Notably,higher plants generally have δ^41 values that are lower than igneous rocks,whereas sea plants(algae)have δ^41 values that are higher than seawater;the range in δ^41K values of plants encompasses the δ^41 values of both igneous rocks and seawater.Plant cells utilize different K uptake mechanisms in response to highand low-K conditions.In a low-K environment,plant cells use energy-consuming ion pumps for active uptake of K;plant cells in high-K environments use non-energy-consuming ion channels.Based on these facts and on K isotope data from sea and land plants,it is hypothesized that the different K uptake mechanisms are accompanied by distinct K isotope fractionation behaviors or vital effects.The enrichment of light K isotopes in terrestrial plants could be attributed to preferential transport of isotopically light K in the energy-consuming active uptake process by K ion pumps in the membranes of plant root cells.On the other hand,the enrichment of heavy K isotopes in algae may be caused by a combination of the lack of K isotope fractionation during K uptake from seawater via ion channels and the preferential efflux of light K isotopes across the cell membrane back to the seawater.The large variation of K isotope compositions in biological samples therefore may reflect the diversity of isotopic vital effects for K in organisms,which implies the great potential of K isotopes in biogeochemical studies.
基金funding support from the973 Program(2014CB440904)Chinese NSF projects(41225012,41490635,41530210)
文摘An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology.
文摘Based on spontaneous desorption characteristic, the correlation of desorption time and gas content was analyzed and the application of it in production was researched. The desorption of high rank coalbed methane in Qinshui basin was periodic, and isotope fractionation effect also exists in the process. △δ^13C1 can be used to distinguish the stabilization of coalbed methane wells, associated with desorption rate, the individual well recoverable reserves can be calculated. Economically recoverable time can be predicted according to the logarithmic relationship between desorption gas content per ton and desorption time. The error between predicted result and numerical simulation result is only 1.5%.
基金supported by the National Key Basic Research Program of China (Grant No. 2013CB429700)National Natural Science Foundation of China (Grant Nos. 40976027, 40830849 and 40906029)Shandong Province Natural Science Foundation for Distinguished Young Scholars (Grant No. JQ200913)
文摘This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ30Si and δ18O values increase with the increasing of SiO2 content. It means that the fractionation of silicon and oxygen isotopes are affected by the silica content. The positive correlation between CaO/Al2O3 ratios and MgO and that between Si/Al and SiO2 content indicate that clinopyroxene is the predominant mineral phase in our samples. We suppose that the fractionation of silicon and oxygen isotopes are influenced by mineral fractional crystallization. Probably, it is due to their different silicon and oxygen bridges. In this study, the δ30Simean value=-0.17‰±0.17‰ and δ18Omean value= +6.07‰±0.57‰ are higher than normal δ30Si and δ18O values of mantle, and we propose that these igneous rocks in the eastern Manus Basin are affected by hydrothermal alteration.
基金the funding support from the 973 Program(2014CB440904)CAS/SAFEA International Partnership Program for Creative Research Teams(Intraplate Mineralization Research Team,KZZD-EW-TZ-20)Chinese NSF projects(41173023,41225012,41490635,41530210)
文摘Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.
文摘The distillation range analysis and elemental analysis of fractioned direct liquefied oil were conducted. Each fraction of liquefied oil contains some nitrogen compounds. Using the acid extraction method and gas chromatography/mass spectrometry (GC-MS), the basic nitrogen compounds have been separated and identified. Compared with the nitrogen content of the liquefied oil before and after separation, the basic nitrogen compounds account for more than half of all nitrogen compounds. The basic nitrogen compounds in the light liquefied oil are easily separated, and contain more types of basic nitrogen compounds. The results also show that there are many basic nitrogen compounds in liquefied oil, such as pyrrole, aniline, pyridine, quinoline and so on. However, there are fewer other types of basic nitrogen compounds.
文摘The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, the computed isotopic fractionation factors derived from the absorption cross sections of five heavy isotopomers are in good agreement with the experimental results. Relative to the 14NI4N16O isotopomer, the N2 rotational state distributions for the isotopically nitrogen substituted N2O are found to be entirely shifted to higher rotational states. Similar to its isotopic fractionation factors, the N2 rotational state distributions for the asymmetric isotopomers 14N15N16O and 15N14N16O are found to be observably different.
基金financially supported by National Natural Science Foundation of China(Grant No.2013CB95670241573012+1 种基金4157113004141261058)
文摘Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the isotopic mass balance equation,relative contributions of new versus old SOC,and SOC turnover rate in corn fields were evaluated world-wide.However,most previous research had not analyzed corn debris left in the field,instead using an average corn plant δ^(13)C value or a measured value to calculate the proportion of corn-derived SOC,either of which could bias results.This paper carried out a detailed analysis of isotopic fractionation in corn plants and deduced the maximum possible bias of SOC dynamics study.The results show approximately 3‰ isotopic fractionation from top to bottom of the corn leaf.The ^(13)C enrichment sequence in corn plant was tassel﹥stalk or cob﹥root﹥leaves.Individual parts accounting for the total dry mass of corn returned distinct values.Consequently,the average δ^(13)C value of corn does not represent the actual isotopic composition of corn debris.Furthermore,we deduced that the greater the fractionation in corn plant,the greater the possible bias.To alleviate bias of SOC dynamics study,we suggest two measures:analyze isotopic compositions and proportions of each part of the corn and determine which parts of the corn plant are left in the field and incorporated into SOC.
文摘The stable isotope systems of the transition metals potentially provide constraints on the current and past operation of the biological pump,and on the state of ocean redox in Earth history.Here we focus on two exemplar metals,nickel(Ni)and zinc(Zn).The oceanic dissolved pool of both elements is isotopically heavier than the known inputs,implying an output with light isotope compositions.The modern oceanic cycle of both these elements is dominated by biological uptake into photosynthesised organic matter and output to sediment.It is increasingly clear,however,that such uptake is associated with only very minor isotope fractionation.We suggest that the isotopic balance is instead closed by the sequestration of light isotopes to sulphide in anoxic and organic-rich sediments,so that it is ocean chemistry that controls these isotope systems,and suggesting a different but equally interesting array of questions in Earth history that can be addressed with these systems.
基金Project supported by the German Research Council, Germany (No. DFG Graduiertenkolleg 339).
文摘To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross N mineralization rate (GNR) in mineral soils (0-10 cm) from six forest stands located in central Germany were determined and compared with two sampling times: April and November. Additionally, soil density fractionation was conducted for incubated soils (with addition of ^15NH4-N and glucose, 40 days) to observe the sink of added ^15N in different soil fractions. The study showed that Nmic and NNR in most stands differed significantly (P 〈 0.05) between the two sampling times, but not GNR, SAN and SON. In November, no close relationships were found between GNR and other N indices, or between Nrnic, SON, and SAN and forest type. However, in April, GNR was significantly correlated (P 〈 0.05) with Nmic, SAN, and NNR along with Nmlc under beech being significantly higher (P 〈 0.05) than under conifers. Furthermore, density fractionation revealed that the light fraction (LF, 0.063-2 mm, 〉 1.7 gcm^-3) was not correlated with the other N indices. In contrast, results from the incubation study proved that more 15N was incorporated into the heavy fraction (HF 〈 0.063 ram, 〉 1.7 g cm^-3) than into LF, indicaing that more labile N existed in HF than in LF. These findings suggested that attention should be paid to the differences existing in N status between agricultural and forest soils.
基金funded by the National Natural Science Foundation of China(41420104007,41330857,and 41673135)the Guangdong Natural Science Foundation of China(S2013050014266)the One Hundred Talents Programme of The Chinese Academy of Sciences
文摘Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs(La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs(LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs(HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs.The substantial fractions of REEs in soils extracted byoxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile(10 %–30 %), which were similar to the mass fraction of Fe(10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.
基金supported by National Basic Research Program of China(Grant No.2009CB421005)Chinese Academy of Sciences for Key Topics in Innovation Engineering(Grant No.KZCX2-YW-Q04-01)
文摘Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied in studies on the universal evolution and marine environment and so on. However, only a few researches have been conducted in applying Cd isotopes to trace the source of metallogenic material and the evolution of the ore-forming fluid in a complex mineralization environment, especially in a hydrothermal ore-formation system. We measured the Cd isotopic compositions of sphalerite, galena, and ores from five lead-zinc deposits in SW China, and found that the ~14/11~Cd values varied from -1.53%o to 0.34%0, with a total range of 1.87%o, which is greater than most of measured geological samples. Meanwhile, through contrasting the Cd content with Cd isotopic compositions of different deposits, it may be concluded that different genetic lead-zinc deposits have different Cd content and isotopic compositions, which could be a tool for the studies on the origin of ore deposits. Also, the biominera]iza- tion and crystal fractionation may also result in Cd isotope fractionation. In a word, although the research of Cd isotopes is presently at the preliminary stage (especially in hydrothermal ore-formation system), this study demonstrated that Cd isotopes can give a clue in tracing the evolution of ore-forming fluid and metallogenic environment.
基金jointly supported by the National Basic Research Program of China(Grant No.2015CB856102)the National Natural Science Foundation of China(Grant Nos.41473033,41172067,41273037)
文摘Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings' daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980 s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous. Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the(de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements(Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes(Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.
基金supported by the Natural Science Foundation of China(41273023U1301231)+2 种基金the National Basic Research Program of China(2013CB430001)the Strategic Priority Research Program(XDB05030302)the‘‘Hundred Talent’’Project of Chinese Academy of Sciences and SKLEG
文摘Practically all physical, chemical, and biologi- cal processes can induce mass-dependent fractionation of mercury (Hg) isotopes. A few special processes such as photochemical reduction of Hg(Ⅱ) and photochemical degradation of methylmercury (MeHg) can produce mass- independent fractionation (MIF) of odd Hg isotopes (odd- MIF), which had been largely reported in variable natural samples and laboratory experiments, and was thought to be caused by either nuclear volume effect or magnetic isotope effect. Recently, intriguing MIF of even Hg isotopes (even- MIF) had been determined in natural samples mainly related to the atmosphere. Though photo-oxidation in the tropopause (inter-layer between the stratosphere and the troposphere) and neutron capture in space were thought to be the possible processes causing even-MIF, the exact mechanism triggering significant even Hg isotope anomaly is still unclear. Even-MIF could provide useful information about the atmospheric chemistry and related climate changes, and the biogeochemical cycle of Hg.
基金supported by the Major National Science and Technology Special Projects (Grant No. 2011ZX05062-01)the National Natural Science Foundation of China (Grant No. 41272175)+1 种基金the Special Fund for Scientific Research on Public Causes from Ministry of Land and Resources of the People’s Republic of China’s (Grant No. 201311015-01)the Fundamental Research Funds for the Central Universities (Grant No. 2652013057)
文摘The commercial recovery of methane from coal is well established in the coalbed methane(CBM) blocks at the east margin of Ordos Basin, China. CBM forms with various carbon isotopic ratios(δ13CPDB) due to the carbon isotopic fractionation in biogenical or thermogenical processes. Based on the geologic evolution of coalbed reservoir and studies on the characteristics of δ13 CPDB values distributed spatially(e.g., horizontal CBM well location area, vertical coal burial zone, coal rank, etc.) and temporally(e.g., geologic evolution history), we explored the formation mechanism of carbon isotopic of methane. The relatively low δ13 CPDB values are widely distributed along the research area, indicating a trend of "lighter-heavier-lighter" from north to south. From a combination analysis of the relationship between δ13 CPDB and the relative effects, the essential aspects in determining CBM carbon isotope being light in the study area are: the genesis of secondary biogas in the north; water soluble effects in the active hydrodynamic areas in the middle; desorption fractionation effect promoted by tectonic evolution in the south; and the sudden warming hydrocarbon fractionation accelerated by magmatic event in particular areas(e.g., Linxian).
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB15020103)the National Key Technology Research and Development Program of China(No.2013BAD11B02)+2 种基金the National Natural Sciences Foundation of China(Nos.41571232 and 41271259)the State Key Laboratory of Soil and Sustainable Agriculture(No.Y412010003)the Knowledge Innovation Program of Institute of Soil Science,Chinese Academy of Sciences(No.ISSASIP1654)
文摘Little is known about the stable carbon isotopes of methane (CH4) emitted (δ13CH4elnitted) from permanently flooded rice fields and double rice-cropping fields. The CH4 emission and corresponding (δ13CH4emitted under various field managements (mulching, water regime, tillage, and nitrogen (N) fertilization) were simultaneously measured in three typical Chinese rice fields, a permanently flooded rice field in Ziyang City, Sichuan Province, Southwest China, a double-rice cropping field in Yingtan City, Jiangxi Province, Southeast China, and a rice-wheat rotation field in Jurong City, Jiangsu Province, East China, from 2010 to 2012. Results showed different seasonal variations of δ13CH4emitted among the three fields during the rice-growing season. The values of (δ13CH4emitted were negatively correlated with corresponding CH4 emissions in seasonal variation and mean, indicating the importance of CH4 production, oxidation, and transport associated with isotopic fractionation effects to the δ13CH4emitted. Seasonal variations of δ13CH4emltted were slightly impacted by mulching cultivation, tillage, and N application, but highly controlled by drainage. Meanwhile, tillage, N application, and especially mulching cultivation had important effects on seasonal mean CH4 emissions and corresponding δ13CH4emitted with low emissions accompanied by high values of δ13CH4emitted. Seasonal mean values of (δ13CH4emitted from the three fields were similar, mostly ranging from -60‰ to -50‰ which are well in agreement with previously published data. These demonstrated that seasonal variations of (δ13CH4emitted mainly depended on the changes in CH4 emission from rice fields and further indicated the important effects of methanogenic pathways, CH4 oxidation, and CH4 transport associated with isotope fractionation effects influenced by field managements on δ13CH4emitted.
基金supported by the National Natural Science Foundation of China(Grants Nos.41472085 and 41172102)the National Basic Research Program of China(Grants Nos.2011CB808805 and 2009CB21950605)the National Project of Exploration and Test Production for Gas Hydrate(Grants Nos.GZH20110030-50603 and GZH20110030-6WX02)
文摘Elemental sulfur(ES) is one of the intermediates in the inorganic sulfur cycle and thus plays a key role in the fractionation of stable sulfur isotopes in different reservoirs and the marine environment. In this study, solid ES is discovered in sediments near the Jiulong Methane Reef in the northern South China Sea by scanning electron microscopy and Raman spectroscopy. Combining the morphology and distribution of ES, pyrite concentrations, and sulfur isotopes, we conclude that:(1) solid ES coexists with pyrite microcrystals and sulfide(oxyhydr)oxides as well as clay minerals, and they are mainly distributed on the surface of mineral aggregates;(2) ES mainly occurs within and near the sulfate-methane transition zone(SMTZ) despite little morphological diversity;(3) ES formation might be related to hydrogen sulfide oxidation and is therefore linked with fluctuations in the SMTZ. Within the SMTZ, hydrogen sulfide is produced and pyrite precipitates because of enhanced anaerobic oxidation of methane coupled with dissimilatory sulfate reduction. This enhances the efficiency of the inorganic sulfur cycle and provides favorable conditions for ES formation. The discovery of solid ES in sediments near the Jiulong Methane Reef suggests an important relationship with SMTZ fluctuations that could have implications for the evolution of methane hydrate in the South China Sea.