The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe ana...The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe analysis and X-ray diffraction).Based on the phase equilibria data obtained,the experimental projection of the liquidus surface and solid state phase-field distribution of the Al?Ca?Ni?La system have been proposed.Microstructure studies reveal that the alloys with the 2?4 wt.%Ca,2?4 wt.%Ni and 1?3 wt.%La ranges have an ultra-fine hypoeutectic structure with 30%volume fraction of eutectic intermetallics,which allows one to classify these alloys as natural Al-matrix composites.The ultra-fine eutectic structure produces significant strengthening,the magnitude of which can be well described using the modified Orowan looping mechanism model.Small additives of Zr and Sc(0.2 and 0.1 wt.%,respectively)lead to significant strengthening(by^25%)due to the formation of L12 type phase(Al3(Zr,Sc))nanoparticles during annealing of the alloy at 350?400℃.Due to the high volume fraction of eutectic intermetallics,the new alloys have low coefficients of thermal expansion and high thermal stability of the structure and mechanical properties.展开更多
Objective: The novel estrogen receptor-α (ER-α) variant ER-α36 is reported to be functional in the es-trogen signaling pathway and is related to tamoxifen resistance in breast cancer. However, ER-α36 tends to be a...Objective: The novel estrogen receptor-α (ER-α) variant ER-α36 is reported to be functional in the es-trogen signaling pathway and is related to tamoxifen resistance in breast cancer. However, ER-α36 tends to be a favorable factor for survival in patients without tamoxifen therapy. To investigate the mechanisms behind this paradox, we determined the differences between the transcriptional profiles of ER-α36 and full-length ER-α (ER-α66) in breast cancers and matched normal tissues. Methods: We analyzed ER-α36 and ER-α66 messenger RNA ( mRNA) levels in 74 pairs of breast cancers and matched normal tissues using a real-time quantitative polymerase chain reaction (PCR) assay, and correlated the results with their clinicopathological characteristics. Results: Breast cancers expressed lower ER-α36 mRNA levels than matched normal tissues regardless of their ER-α66 expression status. Down-regulation of ER-α36 mRNA was correlated with local progression, lymph node metastasis, and advanced cancer stage. The level of ER-α66 mRNA was lower in ER-α negative breast cancers compared with matched normal tissues. No differences in ER-α66 mRNA levels were observed during cancer progression. Conclusion: Down-regulation of ER-α36 is associated with carcinogenesis and progression of breast cancer.展开更多
基金financial support of the grant of the Russian Science Foundation(Project No.18-79-00345)(preparation of alloys,electron microscopy(SEM,EMPA,TEM),tensile tests)Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of MISiS(No.P02-2017-2-10)(thermodynamic calculations,dilatometry,DSC and XRD).
文摘The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe analysis and X-ray diffraction).Based on the phase equilibria data obtained,the experimental projection of the liquidus surface and solid state phase-field distribution of the Al?Ca?Ni?La system have been proposed.Microstructure studies reveal that the alloys with the 2?4 wt.%Ca,2?4 wt.%Ni and 1?3 wt.%La ranges have an ultra-fine hypoeutectic structure with 30%volume fraction of eutectic intermetallics,which allows one to classify these alloys as natural Al-matrix composites.The ultra-fine eutectic structure produces significant strengthening,the magnitude of which can be well described using the modified Orowan looping mechanism model.Small additives of Zr and Sc(0.2 and 0.1 wt.%,respectively)lead to significant strengthening(by^25%)due to the formation of L12 type phase(Al3(Zr,Sc))nanoparticles during annealing of the alloy at 350?400℃.Due to the high volume fraction of eutectic intermetallics,the new alloys have low coefficients of thermal expansion and high thermal stability of the structure and mechanical properties.
基金Project supported by the National Basic Research Program (973) of China (No. 2009CB521704)the National Natural Science Foundation of China (No. 30772510)+2 种基金the Ministry of Health of China (No. WKJ2006-2-008)the Department of Science and Technology of Zhejiang Province (No. 2007C24011)the Natural Science Foundation of Zhejiang Province (No. R206060), China
文摘Objective: The novel estrogen receptor-α (ER-α) variant ER-α36 is reported to be functional in the es-trogen signaling pathway and is related to tamoxifen resistance in breast cancer. However, ER-α36 tends to be a favorable factor for survival in patients without tamoxifen therapy. To investigate the mechanisms behind this paradox, we determined the differences between the transcriptional profiles of ER-α36 and full-length ER-α (ER-α66) in breast cancers and matched normal tissues. Methods: We analyzed ER-α36 and ER-α66 messenger RNA ( mRNA) levels in 74 pairs of breast cancers and matched normal tissues using a real-time quantitative polymerase chain reaction (PCR) assay, and correlated the results with their clinicopathological characteristics. Results: Breast cancers expressed lower ER-α36 mRNA levels than matched normal tissues regardless of their ER-α66 expression status. Down-regulation of ER-α36 mRNA was correlated with local progression, lymph node metastasis, and advanced cancer stage. The level of ER-α66 mRNA was lower in ER-α negative breast cancers compared with matched normal tissues. No differences in ER-α66 mRNA levels were observed during cancer progression. Conclusion: Down-regulation of ER-α36 is associated with carcinogenesis and progression of breast cancer.