期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度神经网络的素色布匹瑕疵检测算法研究 被引量:8
1
作者 安静 唐英杰 马鑫然 《包装工程》 CAS 北大核心 2021年第3期246-251,共6页
目的为了改进当前布匹检测算法覆盖瑕疵种类不全、瑕疵检测准确率低和定位精度差的问题,提出一种端到端的素色布匹瑕疵检测的实用算法。方法首先通过图像增强扩充样本数量,使用以Resnet50为主干的Cascade-RCNN网络,通过加入可变形卷积... 目的为了改进当前布匹检测算法覆盖瑕疵种类不全、瑕疵检测准确率低和定位精度差的问题,提出一种端到端的素色布匹瑕疵检测的实用算法。方法首先通过图像增强扩充样本数量,使用以Resnet50为主干的Cascade-RCNN网络,通过加入可变形卷积、特征融合网络,增加锚框数目的方法实现素色布匹瑕疵检测。结果通过实验对比表明,该算法可实现检测20种布匹瑕疵,检测是否为瑕疵布匹的准确率为97%,瑕疵定位的平均检测精度为65%,每张样本平均时间为80 ms。结论该算法有效提升了布匹瑕疵检测的准确率和精度,检测瑕疵类别更全面,并且可以获取缺陷位置和类别,能够满足工业上的生产需求。 展开更多
关键词 目标检测 素色布匹 瑕疵 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部