Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the...Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the results show that the enhancement factor increases with particle content due to the increase of reactive particles in the gas-liquid interfacial region. The absorption process was controlled by the diffusion of gas molecules in slurry. The influence of stirring intensity on enhancement factor is an integration of gas-liquid and liquid-solid mass transfer variation. A novel prediction model of enhancement factors was proposed with the partition of interface into two various zones, and the prediction values by the presented model are in agreement with the experimental data.展开更多
基金Supported by National Natural Science Foundation of China (No20176036)
文摘Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the results show that the enhancement factor increases with particle content due to the increase of reactive particles in the gas-liquid interfacial region. The absorption process was controlled by the diffusion of gas molecules in slurry. The influence of stirring intensity on enhancement factor is an integration of gas-liquid and liquid-solid mass transfer variation. A novel prediction model of enhancement factors was proposed with the partition of interface into two various zones, and the prediction values by the presented model are in agreement with the experimental data.