期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
工程项目施工变更、索赔探讨 被引量:9
1
作者 李国军 《四川水力发电》 2009年第6期150-152,共3页
变更和索赔是合同管理中的主要环节。对工程造价有很大的影响。为此,对变更索赔进行分析研究并加以防范,对工程建设是很有实际意义的。变更、索赔是合法的所有者,根据自己的权力提出的正当的权力要求,是社会科学和自然科学融为一体的边... 变更和索赔是合同管理中的主要环节。对工程造价有很大的影响。为此,对变更索赔进行分析研究并加以防范,对工程建设是很有实际意义的。变更、索赔是合法的所有者,根据自己的权力提出的正当的权力要求,是社会科学和自然科学融为一体的边缘科学,也可说是一门"艺术"。 展开更多
关键词 变更 索赔 变更索赔率 变更索赔获得
下载PDF
基于二维保修数据的汽车索赔及保修费用预测方法
2
作者 庞欢 石东阳 +1 位作者 宫政 刘敬一 《汽车安全与节能学报》 CAS CSCD 北大核心 2023年第3期310-318,共9页
为了提高汽车索赔率预测精度并准确预测车企在未来时段的保修费用,考虑二维保修数据的删失特性和汽车的过保情形,提出了基于在保率修正的汽车索赔率计算方法。鉴于汽车保修时零件维修和更换两种模式下保修费用的差异,提出了基于索赔率... 为了提高汽车索赔率预测精度并准确预测车企在未来时段的保修费用,考虑二维保修数据的删失特性和汽车的过保情形,提出了基于在保率修正的汽车索赔率计算方法。鉴于汽车保修时零件维修和更换两种模式下保修费用的差异,提出了基于索赔率和维修更换率的保修费用预测方法。结合某品牌汽车的实际二维保修数据,预测了车企未来一个季度的保修费用。结果表明:预测的保修费用与实际保修费用的相对误差在6.5%以内;相较于不考虑汽车在保率的方法,所提保修费用预测方法的预测精度提高了4.5%以上,可以为车企保修策略制定、产品定价及保修准备金规划等提供支撑。 展开更多
关键词 汽车保修 二维保修数据 索赔率 保修费用
下载PDF
汽车销售公司财务内控精细化管理关键点分析 被引量:8
3
作者 王良波 《企业改革与管理》 2018年第5期180-181,共2页
随着"一路一带"建设我国与其他国家经济往来日益密切,汽车销售行业也迎来了前所未有的发展机会与挑战。随着4S店井喷式效益增长,财务控制出现了管理体系不规范、内部管理水平低下、会计监督功能难以有效发挥等问题。加强财务... 随着"一路一带"建设我国与其他国家经济往来日益密切,汽车销售行业也迎来了前所未有的发展机会与挑战。随着4S店井喷式效益增长,财务控制出现了管理体系不规范、内部管理水平低下、会计监督功能难以有效发挥等问题。加强财务内控精细化管理一方面可以提高汽车销售经营效益和综合竞争能力,另一方面能有效对汽车4S店的财务活动和经营活动进行控制和约束。本文就4S店财务内控精细化管理目前现状进行分析、提出财务内控精细化管理的关键点并进行比较细致的分析。 展开更多
关键词 财务内控 精细化管理 首保索赔率 厂家商务政策
原文传递
FINITE-TIME RUIN PROBABILITY WITH NQD DOMINATED VARYING-TAILED CLAIMS AND NLOD INTER-ARRIVAL TIMES 被引量:8
4
作者 Jingzhi LI Kaiyong WANG Yuebao WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期407-414,共8页
In 2007,Chen and Ng investigated infinite-time ruin probability with constant interest forceand negatively quadrant dependent and extended regularly varying-tailed claims.Following this work,the authors obtain a weakl... In 2007,Chen and Ng investigated infinite-time ruin probability with constant interest forceand negatively quadrant dependent and extended regularly varying-tailed claims.Following this work,the authors obtain a weakly asymptotic equivalent formula for the finite-time and infinite-time ruinprobability with constant interest force,negatively quadrant dependent,and dominated varying-tailedclaims and negatively lower orthant dependent inter-arrival times.In particular,when the claims areconsistently varying-tailed,an asymptotic equivalent formula is presented. 展开更多
关键词 Heavy tail negatively lower orthant dependent negatively quadrant dependent renewalmodel ruin probability.
原文传递
RUIN PROBABILITIES WITH PAIRWISE QUASI-ASYMPTOTICALLY INDEPENDENT AND DOMINATEDLY-VARYING TAILED CLAIMS 被引量:1
5
作者 Yinghua DONG Yuebao WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第2期303-314,共12页
This paper considers the nonstandard renewal risk model in which a part of surplus is invested into a Black-Scholes market whose price process is modelled by a geometric Brownian motion, claim sizes form a sequence of... This paper considers the nonstandard renewal risk model in which a part of surplus is invested into a Black-Scholes market whose price process is modelled by a geometric Brownian motion, claim sizes form a sequence of not necessarily identically distributed and pairwise quasi-asymptotically independent random variables with dominatedly-varying tails.The authors obtain a weakly asymptotic formula for the finite-time and infinite-time ruin probabilities.In particular,if the claims are identically distributed and consistently-varying tailed,then an asymptotic formula is presented. 展开更多
关键词 Dominatedly varying tails nonstandard renewal risk model pairwise quasi-asymptotic independence perturbed renewal risk model weighted renewal function.
原文传递
Uniform tail asymptotics for the aggregate claims with stochastic discount in the renewal risk models
6
作者 ZHU ChunHua GAO QiBing LIN JinGuan 《Science China Mathematics》 SCIE CSCD 2015年第5期1079-1090,共12页
Considering an insurer who is allowed to make risk-free and risky investments, as in Tang et al.(2010), the price process of the investment portfolio is described as a geometric L′evy process. We study the tail proba... Considering an insurer who is allowed to make risk-free and risky investments, as in Tang et al.(2010), the price process of the investment portfolio is described as a geometric L′evy process. We study the tail probability of the stochastic present value of future aggregate claims. When the claim-size distribution is of extended regular variation, we obtain an asymptotically equivalent formula which holds uniformly for all time horizons, and furthermore, the same asymptotic formula holds for the finite-time ruin probabilities. The results extend the works of Tang et al.(2010). 展开更多
关键词 renewal risk models ASYMPTOTICS Levy process UNIFORMITY extended regular variation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部