We study the influence of the shape of compact a scalar field. We examine both the massive and the massless dimensions to the Casimir energy and Casimir force of scalar field. The total spacetime topology is M^D ×...We study the influence of the shape of compact a scalar field. We examine both the massive and the massless dimensions to the Casimir energy and Casimir force of scalar field. The total spacetime topology is M^D × Tθ2, where M^D) is the D-dimensional Minkowski spacetime and Tθ2 the twisted torus described by R1, R2, and 8. For the case R1 = R2 we found that the massive bulk scalar field Casimir energy is singular for D=even and this singularity is R-dependent and remains even when the force is calculated. Also the massless Casimir energy and force is regular only for D = 4 (!). This is very interesting phenomenologically. We examine the energy and force as a function of 8. Also we address the stabilization problem of the compact space. We also briefly discuss some phenomenological implications.展开更多
Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enh...Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.展开更多
Taking into account stealth, structure and maintenance, ultra-compact S-shaped intake has been widely used in modem vehicles. In this paper a series of steady numerical simulation were carried out to investigate the c...Taking into account stealth, structure and maintenance, ultra-compact S-shaped intake has been widely used in modem vehicles. In this paper a series of steady numerical simulation were carried out to investigate the complex flow mechanism in s-shaped intake, particular attention was given to examining the effect of centerline curvature on the performance and flowfield of an ultra-compact S-shaped intake. In order to validate the multi-block model, the computational results for Royal Aircraft Establishment intake 2129-M2129 which had modest centerline cur- vature distribution were corrected with available experimental test data. The numerical simulation results agreed fairly well with the experimental data, and the computational method was then used to investigate the effects of different centerline curvature distributions on performance and flow field in compact S-shaped intake. Detailed analyses of the flow visualization had exposed the different flow topologies between the cases with different cen- terline curvature. It was found that different centerline curvature distributions changed the initial location and the size of separation bubble, as well as the strength of two counter-rotating vortices at the entrance of engine.展开更多
Let N be a compact complex submanifold of a compact complex manifold M. We say that Nsplits in M, if the holomorphic tangent bundle sequence splits holomorphically. By a result of Mok, a splittingsubmanifold of a Khle...Let N be a compact complex submanifold of a compact complex manifold M. We say that Nsplits in M, if the holomorphic tangent bundle sequence splits holomorphically. By a result of Mok, a splittingsubmanifold of a Khler-Einstein manifold with a projective structure is totally geodesic. The classification ofall splitting submanifolds of families of fake elliptic curves given here completes the case of threefolds M with aprojective structure by a previous result of the authors.展开更多
We discuss the Casimir effect for massless scalar fields subject to the Diriehlet boundary conditions on the parallel plates at finite temperature in the presence of one fraetal extra eompactified dimension. We obtain...We discuss the Casimir effect for massless scalar fields subject to the Diriehlet boundary conditions on the parallel plates at finite temperature in the presence of one fraetal extra eompactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sumciently high, the sign of the Casimir energy remains negative no matter how great the scale dimension 6 is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.展开更多
文摘We study the influence of the shape of compact a scalar field. We examine both the massive and the massless dimensions to the Casimir energy and Casimir force of scalar field. The total spacetime topology is M^D × Tθ2, where M^D) is the D-dimensional Minkowski spacetime and Tθ2 the twisted torus described by R1, R2, and 8. For the case R1 = R2 we found that the massive bulk scalar field Casimir energy is singular for D=even and this singularity is R-dependent and remains even when the force is calculated. Also the massless Casimir energy and force is regular only for D = 4 (!). This is very interesting phenomenologically. We examine the energy and force as a function of 8. Also we address the stabilization problem of the compact space. We also briefly discuss some phenomenological implications.
文摘Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.
文摘Taking into account stealth, structure and maintenance, ultra-compact S-shaped intake has been widely used in modem vehicles. In this paper a series of steady numerical simulation were carried out to investigate the complex flow mechanism in s-shaped intake, particular attention was given to examining the effect of centerline curvature on the performance and flowfield of an ultra-compact S-shaped intake. In order to validate the multi-block model, the computational results for Royal Aircraft Establishment intake 2129-M2129 which had modest centerline cur- vature distribution were corrected with available experimental test data. The numerical simulation results agreed fairly well with the experimental data, and the computational method was then used to investigate the effects of different centerline curvature distributions on performance and flow field in compact S-shaped intake. Detailed analyses of the flow visualization had exposed the different flow topologies between the cases with different cen- terline curvature. It was found that different centerline curvature distributions changed the initial location and the size of separation bubble, as well as the strength of two counter-rotating vortices at the entrance of engine.
文摘Let N be a compact complex submanifold of a compact complex manifold M. We say that Nsplits in M, if the holomorphic tangent bundle sequence splits holomorphically. By a result of Mok, a splittingsubmanifold of a Khler-Einstein manifold with a projective structure is totally geodesic. The classification ofall splitting submanifolds of families of fake elliptic curves given here completes the case of threefolds M with aprojective structure by a previous result of the authors.
基金Supported by National Natural Science Foundation of China under Grant No.10875043partly by the Shanghai Research Foundation under Grant No.07dz22020
文摘We discuss the Casimir effect for massless scalar fields subject to the Diriehlet boundary conditions on the parallel plates at finite temperature in the presence of one fraetal extra eompactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sumciently high, the sign of the Casimir energy remains negative no matter how great the scale dimension 6 is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.