As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effective...As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effectiveness and sustainability. This study exploits a superhydrophobic nanostructured aluminum tube to estimate electrical output for solid-water contact electrification inside a tubular system. The linearly proportional relationship of short-circuit current and open-circuit voltage to the detaching speed of water was determined by using a theoretical energy harvesting model and experimentation. A pioneering stick-type solid-water interacting triboelectric nanogenerator, called a SWING stick, was developed to harvest mechanical energy through solid-water contact electrification generated when the device is shaken by hand. The electrical output generated by various kinds of water from the environment was also measured to demonstrate the concept of the SWING stick as a compact triboelectric nanogenerator. Several SWING sticks were connected to show the feasibility of the device as a portable and compact source of direct power. The developed energy harvesting model and the SWING stick can provide a guideline for the design parameters to attain a desired electrical output; therefore, this study can significantly increase the applicability of a water-driven triboelectric nanogenerator.展开更多
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications,such as variceal bleeding,ascites or hepatic encephalopathy.As such,clinically significant portal hyp...Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications,such as variceal bleeding,ascites or hepatic encephalopathy.As such,clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis.At present,non-selective bblockers,vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia.In contrast,safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue.In recent years,several preclinical and clinical trials have focused on this latter component and other therapeutic avenues.In this review,we highlight novel data in this context and address potentially interesting therapeutic options for the future.展开更多
文摘As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effectiveness and sustainability. This study exploits a superhydrophobic nanostructured aluminum tube to estimate electrical output for solid-water contact electrification inside a tubular system. The linearly proportional relationship of short-circuit current and open-circuit voltage to the detaching speed of water was determined by using a theoretical energy harvesting model and experimentation. A pioneering stick-type solid-water interacting triboelectric nanogenerator, called a SWING stick, was developed to harvest mechanical energy through solid-water contact electrification generated when the device is shaken by hand. The electrical output generated by various kinds of water from the environment was also measured to demonstrate the concept of the SWING stick as a compact triboelectric nanogenerator. Several SWING sticks were connected to show the feasibility of the device as a portable and compact source of direct power. The developed energy harvesting model and the SWING stick can provide a guideline for the design parameters to attain a desired electrical output; therefore, this study can significantly increase the applicability of a water-driven triboelectric nanogenerator.
文摘Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications,such as variceal bleeding,ascites or hepatic encephalopathy.As such,clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis.At present,non-selective bblockers,vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia.In contrast,safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue.In recent years,several preclinical and clinical trials have focused on this latter component and other therapeutic avenues.In this review,we highlight novel data in this context and address potentially interesting therapeutic options for the future.