针对特高压直流闭锁等原因造成的受端电网频率严重跌落问题,提出一种储能紧急频率控制策略。首先,建立储能参与紧急频率控制的数学模型。其次,对于大功率缺额后发电机组惯性响应不足问题,提出了改进的频率变化率(rate of change of freq...针对特高压直流闭锁等原因造成的受端电网频率严重跌落问题,提出一种储能紧急频率控制策略。首先,建立储能参与紧急频率控制的数学模型。其次,对于大功率缺额后发电机组惯性响应不足问题,提出了改进的频率变化率(rate of change of frequency,RoCoF)下垂控制策略以提高储能的惯量支撑,根据储能比例分配系数实时调节储能虚拟惯性及下垂控制出力;惯性响应阶段以RoCoF下垂控制为主、虚拟惯性控制为辅,抑制系统频率变化率;结合频率调节需求和储能系统出力特点提出不同区域的调频策略,并通过模糊控制量化处理区域控制偏差及荷电状态不确定性,提高储能系统频率控制的精度。最后,以某电网实际算例仿真验证了所提方法的有效性和工程实用性。展开更多
文摘针对特高压直流闭锁等原因造成的受端电网频率严重跌落问题,提出一种储能紧急频率控制策略。首先,建立储能参与紧急频率控制的数学模型。其次,对于大功率缺额后发电机组惯性响应不足问题,提出了改进的频率变化率(rate of change of frequency,RoCoF)下垂控制策略以提高储能的惯量支撑,根据储能比例分配系数实时调节储能虚拟惯性及下垂控制出力;惯性响应阶段以RoCoF下垂控制为主、虚拟惯性控制为辅,抑制系统频率变化率;结合频率调节需求和储能系统出力特点提出不同区域的调频策略,并通过模糊控制量化处理区域控制偏差及荷电状态不确定性,提高储能系统频率控制的精度。最后,以某电网实际算例仿真验证了所提方法的有效性和工程实用性。