To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order vel...To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.展开更多
This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional conv...This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.展开更多
Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only ret...Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and tbe two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves.展开更多
基金supported by the National High-Tech Research and Development Program of China(Grant No.2006AA06Z202)the Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金the Graduate Student Innovation Fund of China University of Petroleum(East China)(Grant No.S2008-1)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
基金supported by Natural Science Foundation of China (Grant No. 10871044)
文摘This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 110632050, 10872205)the National Basic Research Program of China (Grant No. 2009CB724100)Projects of CAS INFO-115-B01
文摘Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and tbe two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves.