TH751 2005043162 一种空间超紫外望远镜在轨指向标定方法=A new meth- od of guiding calibration of extreme ultraviolet radiation telescope on space orbit[刊,中]/陈波(中科院长春光机所应用光学国家重点实验室,吉林,长春(13003...TH751 2005043162 一种空间超紫外望远镜在轨指向标定方法=A new meth- od of guiding calibration of extreme ultraviolet radiation telescope on space orbit[刊,中]/陈波(中科院长春光机所应用光学国家重点实验室,吉林,长春(130033)),苏宙平…//光学技术,-2005,31(2),-315-318 介绍了一种不同波段的超紫外望远镜在轨指向的标定方法。此方法利用4个波段(13.0,17.1,19.5,30.4 nm)的超紫外望远镜均有较高的光谱响应和能够对较强的太阳辐射光谱成像的特点。展开更多
This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30....This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30.4 nm. These four wavelengths, fundamental to the research of the solar activity and the atmosphere dynamics, are always chosen by the EUV normal incidence solar telescope. In the EUV region, almost all materials have strong absorption, so optics used in this region must be coated by the multilayer. The Mo/Si multilayers used for the EUV normal incidence solar telescope are designed and fabricated by the magnetron sputtering coating machine. The characteristics of these multilayers, such as reflectivity and thermal stability at wavelengths of 13.0 nm, 17.1 nm, 19.5 nm and 30.4 nm, are also described. All the multilayers were measured by a hard X-ray diffractometer (XRD) and an EUV/soft X-ray reflectometer (EXRR) before and after heating (in a vacuum chamber) at 100℃ for 24 hours and at 200℃ for 1 hour and 4 hours. The results show that Mo/Si multilayers have high reflectivity at 13.0 nm, 17.1 nm, and 19.5 nm but low at 30.4 nm. We found no change in the reflectivity and center wavelength of these multilayers by comparing the reflectivity curves before and after heating. This suggests the thermal stability of Mo/Si multilayers may meet our requirement in future solar observation missions.展开更多
The Lunar-based Ultraviolet Telescope (LUT) is a funded lunar-based ultraviolet telescope dedicated to continuously monitor- ing variable stars for as long as dozens of days and performing low Galactic latitude sky ...The Lunar-based Ultraviolet Telescope (LUT) is a funded lunar-based ultraviolet telescope dedicated to continuously monitor- ing variable stars for as long as dozens of days and performing low Galactic latitude sky surveys. The slow and smooth spin of the Moon makes its step by step pointing strategy possible. A flat mirror mounted on a gimbal mount is configured to enlarge the sky coverage of the LUT. A Ritehey-Chretien telescope with a Nasmyth focus configuration is adopted to reduce the total length of the system. A UV enhanced back illuminated AIMO CCD 47-20 chip together with the low noise electric design will minimize the instrumental influence on the system. The preliminary proposal for astrometric calibration and photometric cali- bration are also presented.展开更多
文摘TH751 2005043162 一种空间超紫外望远镜在轨指向标定方法=A new meth- od of guiding calibration of extreme ultraviolet radiation telescope on space orbit[刊,中]/陈波(中科院长春光机所应用光学国家重点实验室,吉林,长春(130033)),苏宙平…//光学技术,-2005,31(2),-315-318 介绍了一种不同波段的超紫外望远镜在轨指向的标定方法。此方法利用4个波段(13.0,17.1,19.5,30.4 nm)的超紫外望远镜均有较高的光谱响应和能够对较强的太阳辐射光谱成像的特点。
基金supported by the National Natural Science Foundation of China (Grant Nos. 40774098 and 10878004)
文摘This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30.4 nm. These four wavelengths, fundamental to the research of the solar activity and the atmosphere dynamics, are always chosen by the EUV normal incidence solar telescope. In the EUV region, almost all materials have strong absorption, so optics used in this region must be coated by the multilayer. The Mo/Si multilayers used for the EUV normal incidence solar telescope are designed and fabricated by the magnetron sputtering coating machine. The characteristics of these multilayers, such as reflectivity and thermal stability at wavelengths of 13.0 nm, 17.1 nm, 19.5 nm and 30.4 nm, are also described. All the multilayers were measured by a hard X-ray diffractometer (XRD) and an EUV/soft X-ray reflectometer (EXRR) before and after heating (in a vacuum chamber) at 100℃ for 24 hours and at 200℃ for 1 hour and 4 hours. The results show that Mo/Si multilayers have high reflectivity at 13.0 nm, 17.1 nm, and 19.5 nm but low at 30.4 nm. We found no change in the reflectivity and center wavelength of these multilayers by comparing the reflectivity curves before and after heating. This suggests the thermal stability of Mo/Si multilayers may meet our requirement in future solar observation missions.
基金supported by the Ministry of Science and Technology of China and the National Natural Science Foundation of China (Grant Nos. 10803008, 10978020 and 10878019)
文摘The Lunar-based Ultraviolet Telescope (LUT) is a funded lunar-based ultraviolet telescope dedicated to continuously monitor- ing variable stars for as long as dozens of days and performing low Galactic latitude sky surveys. The slow and smooth spin of the Moon makes its step by step pointing strategy possible. A flat mirror mounted on a gimbal mount is configured to enlarge the sky coverage of the LUT. A Ritehey-Chretien telescope with a Nasmyth focus configuration is adopted to reduce the total length of the system. A UV enhanced back illuminated AIMO CCD 47-20 chip together with the low noise electric design will minimize the instrumental influence on the system. The preliminary proposal for astrometric calibration and photometric cali- bration are also presented.