建立紫外-可见-短波近红外漫反射光谱结合化学计量学测定白芷中二氧化硫残留量的方法。利用紫外-可见-短波近红外漫反射光谱技术并结合化学计量学建模预测二氧化硫残留量。偏最小二乘回归法(PLSR)建模优于支持向量回归法(SVR); Random F...建立紫外-可见-短波近红外漫反射光谱结合化学计量学测定白芷中二氧化硫残留量的方法。利用紫外-可见-短波近红外漫反射光谱技术并结合化学计量学建模预测二氧化硫残留量。偏最小二乘回归法(PLSR)建模优于支持向量回归法(SVR); Random Frog波段选择结合Auto-scaling预处理后PLS建模后预测效果最佳,校正集R^2为0. 99,交叉验证集R^2为0. 94,预测集R^2为0. 96。紫外-可见-短波近红外漫反射光谱结合化学计量学可以实现二氧化硫残留量的快速检测,为中药饮片的质量评价及监管提供一种技术手段。展开更多
考虑到植被可见光-近红外的光谱吸收特征与光合有效辐射吸收率(fraction of absorbed photosynthetically active radiation,FAPAR)有很好的关联,综合"高光谱曲线特征吸收峰自动识别法"与"光谱吸收特征参量化法",...考虑到植被可见光-近红外的光谱吸收特征与光合有效辐射吸收率(fraction of absorbed photosynthetically active radiation,FAPAR)有很好的关联,综合"高光谱曲线特征吸收峰自动识别法"与"光谱吸收特征参量化法",提取对FAPAR敏感的高光谱吸收特征参数,借鉴可见光-近红外植被指数的数学形式,尝试用优化组合后的可见光-近红外光谱吸收特征参数替代光谱反射率,构建新型植被指数估算植被FAPAR,并利用2014年和2015年内蒙古自治区中部与东部地区天然草地典型群落冠层实测光谱数据进行FAPAR估算建模与验证。结果表明:新型植被指数"SAI-VI"不仅有效提高了单个光谱吸收特征参数在高、低覆盖区域估算FAPAR的精度,而且相比五种与FAPAR有较好相关性的具有不同作用类型的可见光-近红外植被指数,其与FAPAR值的相关性更高(存在最大相关系数=0.801),以其为变量的指数模型预测FAPAR精度更高且稳定性较好(建模与检验的判定系数均最高且超过0.75,标准误差与平均误差系数也相应最小)。研究表明:融入可见光-近红外高光谱吸收特征的新型植被指数"SAI-VI",强化了可见光波段与近红外波段光谱吸收特征的差别,相较单一光谱吸收特征参数,在降低土壤背景影响的同时增强了对FAPAR变化的敏感度。同时,"SAI-VI"有效综合了对植被FAPAR敏感的光谱吸收特征信息,相较原始光谱反射率,能表达植被光合有效辐射吸收特征的更多细节信息,可作为植被冠层FAPAR反演的新参数,一定程度上弥补当前植被指数法估算FAPAR的不足。展开更多
文摘考虑到植被可见光-近红外的光谱吸收特征与光合有效辐射吸收率(fraction of absorbed photosynthetically active radiation,FAPAR)有很好的关联,综合"高光谱曲线特征吸收峰自动识别法"与"光谱吸收特征参量化法",提取对FAPAR敏感的高光谱吸收特征参数,借鉴可见光-近红外植被指数的数学形式,尝试用优化组合后的可见光-近红外光谱吸收特征参数替代光谱反射率,构建新型植被指数估算植被FAPAR,并利用2014年和2015年内蒙古自治区中部与东部地区天然草地典型群落冠层实测光谱数据进行FAPAR估算建模与验证。结果表明:新型植被指数"SAI-VI"不仅有效提高了单个光谱吸收特征参数在高、低覆盖区域估算FAPAR的精度,而且相比五种与FAPAR有较好相关性的具有不同作用类型的可见光-近红外植被指数,其与FAPAR值的相关性更高(存在最大相关系数=0.801),以其为变量的指数模型预测FAPAR精度更高且稳定性较好(建模与检验的判定系数均最高且超过0.75,标准误差与平均误差系数也相应最小)。研究表明:融入可见光-近红外高光谱吸收特征的新型植被指数"SAI-VI",强化了可见光波段与近红外波段光谱吸收特征的差别,相较单一光谱吸收特征参数,在降低土壤背景影响的同时增强了对FAPAR变化的敏感度。同时,"SAI-VI"有效综合了对植被FAPAR敏感的光谱吸收特征信息,相较原始光谱反射率,能表达植被光合有效辐射吸收特征的更多细节信息,可作为植被冠层FAPAR反演的新参数,一定程度上弥补当前植被指数法估算FAPAR的不足。
基金the National Natural Science Foundation of China (11602280, 617905246) and the scientific equipment developing project of the Chinese academy of sciences (28201631231100101)