A greenhouse experiment was conducted using stratified paddy field models, which were prepared by polluted soil with 12.5 cm soil dressing. The paddy models were assembled with open and closed percolation system to fo...A greenhouse experiment was conducted using stratified paddy field models, which were prepared by polluted soil with 12.5 cm soil dressing. The paddy models were assembled with open and closed percolation system to focus the effect of percolation pattern on accumulation of cupper (Cu) and cadmium (Cd) in rice plants in contaminated paddy filed with soil dressing models. Percolation pattern has significant effect on soil environment, especially redox potential that may influence mobilization of Cd, Cu and other elements. In open system percolation models, the plowsole and subsoil were in oxidative condition (600 mV), whereas reduction condition (-200 mV) was measured in closed system percolation models. Accumulations of Cu and Cd in all parts of rice plants (roots, grains, stems and leaves) were found higher in an open system percolation with the paddy field model comparatively than in a closed system percolation. The soil redox (Eh) condition influenced by the percolation pattern might be one of the main factors for uptake and accumulation of Cu and Cd in rice plants. The plant height and stem number were found lower in open system percolation comparatively to closed system percolation. In the yields section, the average panicle length, number of panicle and rice grain/hill and weight of grain/hill were lower in open system percolation than the closed system percolation.展开更多
文摘A greenhouse experiment was conducted using stratified paddy field models, which were prepared by polluted soil with 12.5 cm soil dressing. The paddy models were assembled with open and closed percolation system to focus the effect of percolation pattern on accumulation of cupper (Cu) and cadmium (Cd) in rice plants in contaminated paddy filed with soil dressing models. Percolation pattern has significant effect on soil environment, especially redox potential that may influence mobilization of Cd, Cu and other elements. In open system percolation models, the plowsole and subsoil were in oxidative condition (600 mV), whereas reduction condition (-200 mV) was measured in closed system percolation models. Accumulations of Cu and Cd in all parts of rice plants (roots, grains, stems and leaves) were found higher in an open system percolation with the paddy field model comparatively than in a closed system percolation. The soil redox (Eh) condition influenced by the percolation pattern might be one of the main factors for uptake and accumulation of Cu and Cd in rice plants. The plant height and stem number were found lower in open system percolation comparatively to closed system percolation. In the yields section, the average panicle length, number of panicle and rice grain/hill and weight of grain/hill were lower in open system percolation than the closed system percolation.