Polyaluminium chloride (PAC) synthetic water was selected as a coagulant and kaolin suspension particles as objects to be removed. Online instruments such as the turbidimeter and particle counter were employed to moni...Polyaluminium chloride (PAC) synthetic water was selected as a coagulant and kaolin suspension particles as objects to be removed. Online instruments such as the turbidimeter and particle counter were employed to monitor the flocculation process online and collect test data. The aim of the experiments was to study the dynamic distribution characteristics of suspension particles in the flocculation process. The 3D flow field in the reacting vessel was also simulated at different slow stirring speeds. The experiments showed that particle collision and aggregation in the flocculation process is in compliance with the Sutherland cluster aggregation model. This study further indicated that under appropriate hydrodynamic conditions, the distribution of turbulent flow in the reactor could be improved to increase the odds of effective particle collision and restrain the breakup of formed flocs by vortex shearing force. A good flocculation effect could therefore be produced.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50678047)the Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z305)the National Science and Technology Project of Eleventh Five Years of China (No. 2006BAJ08B05-2)
文摘Polyaluminium chloride (PAC) synthetic water was selected as a coagulant and kaolin suspension particles as objects to be removed. Online instruments such as the turbidimeter and particle counter were employed to monitor the flocculation process online and collect test data. The aim of the experiments was to study the dynamic distribution characteristics of suspension particles in the flocculation process. The 3D flow field in the reacting vessel was also simulated at different slow stirring speeds. The experiments showed that particle collision and aggregation in the flocculation process is in compliance with the Sutherland cluster aggregation model. This study further indicated that under appropriate hydrodynamic conditions, the distribution of turbulent flow in the reactor could be improved to increase the odds of effective particle collision and restrain the breakup of formed flocs by vortex shearing force. A good flocculation effect could therefore be produced.