We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configurati...We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configuration, uniformly demonstrates pseudo-PT-antisymmetry, which by our definition corresponds to n(z)=-n*(-z), the complex refractive index antisymmetry along propagation axis, and when being cast back to quantum mechanical side, corresponds to V (x, t)=-V*(x,-t), the conjugate time-reversal antisymmetry of complex potential. We define this as the pseudoPT-antisymmetry, and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices. This work will help to deepen the understanding of origin of optical response features of atomic lattices, and will certainly open up the gate to a more rigorous, durable and flexible method of atomic optical lattice design.展开更多
基金Support from National Basic Research Program of China under Grant No.2014CB921403National Natural Science Foundation of China under Grant Nos.11534002,U1730449 and U1530401
文摘We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configuration, uniformly demonstrates pseudo-PT-antisymmetry, which by our definition corresponds to n(z)=-n*(-z), the complex refractive index antisymmetry along propagation axis, and when being cast back to quantum mechanical side, corresponds to V (x, t)=-V*(x,-t), the conjugate time-reversal antisymmetry of complex potential. We define this as the pseudoPT-antisymmetry, and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices. This work will help to deepen the understanding of origin of optical response features of atomic lattices, and will certainly open up the gate to a more rigorous, durable and flexible method of atomic optical lattice design.