Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to ...Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.展开更多
It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its des...It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.展开更多
This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense codi...This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense coding,and illustrates the fact that this method also provides theoretical basis for establishing corresponding knotted pictures.展开更多
For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correct...For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correction capability. This letter presents a new FEC scheme based on multiple-symbol interleaved Reed-Solomon codes and an associated two-pass decoding algorithm. It is shown that the proposed multi-symbol interleaved Reed-Solomon scheme can achieve nearly twice as much as the burst error correction capability of conventional single-symbol interleaved Reed-Solomon codes with the same code length and code rate.展开更多
A type of two qubits Josephson charge system is constructed, and properties of the quantum discord (QD) as well as the differences between thermal QD and thermal entanglement are investigated. A detailed calculation...A type of two qubits Josephson charge system is constructed, and properties of the quantum discord (QD) as well as the differences between thermal QD and thermal entanglement are investigated. A detailed calculation shows that the magnetic flux is more efficient than the voltage in tuning QD. By choosing proper system parameter the maximum QD can be realized in our two qubits Josephson charge system.展开更多
An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasit...An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasitic capacitors. The linearity error of capacitor array caused by process mismatch is calibrated by a novel calibration capacitor array that can improve the sampling rate. The dual-comparator topology ensures both the speed and precision of the ADC. The simulation results show that the SAR ADC after calibration achieves 83.07 dB SNDR and 13.5 bit ENOB at 500 kilosamples/s.展开更多
Polar motion depicts the slow changes in the locations of the poles due to the earth's internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction.T...Polar motion depicts the slow changes in the locations of the poles due to the earth's internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction.Through statistical analysis of the time series of the LS+AR model's short-term prediction residuals,we found that there is a good correlation of model prediction residuals between adjacent terms.These indicate that the preceding model prediction residuals and experiential adjustment matrixes can be used to correct the next prediction results,thereby forming a new LS+AR model with additional error correction that applies to polar motion prediction.Simulated predictions using this new model revealed that the proposed method can improve the accuracy and reliability of polar motion prediction.In fact,the accuracies of ultra short-term and short-term predictions using the new model were equal to the international best level at present.展开更多
In this paper,the role of constant optimal forcing(COF) in correcting forecast models was numerically studied using the well-known Lorenz 63 model.The results show that when we only consider model error caused by para...In this paper,the role of constant optimal forcing(COF) in correcting forecast models was numerically studied using the well-known Lorenz 63 model.The results show that when we only consider model error caused by parameter error,which also changes with the development of state variables in a numerical model,the impact of such model error on forecast uncertainties can be offset by superimposing COF on the tendency equations in the numerical model.The COF can also offset the impact of model error caused by stochastic processes.In reality,the forecast results of numerical models are simultaneously influenced by parameter uncertainty and stochastic process as well as their interactions.Our results indicate that COF is also able to significantly offset the impact of such hybrid model error on forecast results.In summary,although the variation in the model error due to physical process is time-dependent,the superimposition of COF on the numerical model is an effective approach to reducing the influence of model error on forecast results.Therefore,the COF method may be an effective approach to correcting numerical models and thus improving the forecast capability of models.展开更多
Bipartite entanglement, entanglement spectrum, and Schmidt gap in S=1 bond-alternative antiferromagnetic Heisenberg chain are investigated by the infinite time-evolving block decimation (iTEBD) method. The quantum p...Bipartite entanglement, entanglement spectrum, and Schmidt gap in S=1 bond-alternative antiferromagnetic Heisenberg chain are investigated by the infinite time-evolving block decimation (iTEBD) method. The quantum phase transition (QPT) from the singlet-dimer phase to the Haldane phase can be detected by the singular behavior of bipartite entanglement, the sudden change of the entanglement spectrum, and the completely vanishing of the Schmidt gap. The critical point is determined to be around rc ^- 0.587, and the second-order character of the QPT is verified. Doubly degenerate entanglement spectra of both even and odd bonds are observed in the Haldane phase, by which one can distinguish the Haldane phase from the singlet-dimer phase easily. Nearest-neighbor antiferromagnetic correlations and next-nearest-neighbor ferromagnetic correlations are found in the whole parameter region. At the critical massless point, although exponentially decaying antiferromagnetie correlation is observed, it approaches to a constant value finally. Therefore, long-range correlations exist and the correlation length becomes divergent at the critical point.展开更多
Based on the genetic algorithm(GA),a new genetic probability decoding(GPD) scheme for forward error correction(FEC) codes in optical transmission systems is proposed.The GPD scheme can further offset the quantificatio...Based on the genetic algorithm(GA),a new genetic probability decoding(GPD) scheme for forward error correction(FEC) codes in optical transmission systems is proposed.The GPD scheme can further offset the quantification error of the hard decision by making use of the channel interference probability and statistics information to restore the maximal likelihood transmission code word.The theoretical performance analysis and the simulation result show that the proposed GPD scheme has the advantages of lower decoding complexity,faster decoding speed and better decoding correction-error performance.Therefore,the proposed GPD algorithm is a better practical decoding algorithm.展开更多
A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of bal...A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.60472018 and 60573127partly supported by the Postdoctoral Science Foundation of Central South University
文摘Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.
基金Supported by the National Natural Science Foundation of China (No.60403004)the Outstanding Youth Foundation of China (No.0612000500)
文摘It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.
文摘This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense coding,and illustrates the fact that this method also provides theoretical basis for establishing corresponding knotted pictures.
文摘For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correction capability. This letter presents a new FEC scheme based on multiple-symbol interleaved Reed-Solomon codes and an associated two-pass decoding algorithm. It is shown that the proposed multi-symbol interleaved Reed-Solomon scheme can achieve nearly twice as much as the burst error correction capability of conventional single-symbol interleaved Reed-Solomon codes with the same code length and code rate.
文摘A type of two qubits Josephson charge system is constructed, and properties of the quantum discord (QD) as well as the differences between thermal QD and thermal entanglement are investigated. A detailed calculation shows that the magnetic flux is more efficient than the voltage in tuning QD. By choosing proper system parameter the maximum QD can be realized in our two qubits Josephson charge system.
基金Supported by National Science and Technology Major Project of China(No.2012ZX03004008)
文摘An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasitic capacitors. The linearity error of capacitor array caused by process mismatch is calibrated by a novel calibration capacitor array that can improve the sampling rate. The dual-comparator topology ensures both the speed and precision of the ADC. The simulation results show that the SAR ADC after calibration achieves 83.07 dB SNDR and 13.5 bit ENOB at 500 kilosamples/s.
基金supported by the National Natural Science Foundation of China(Grant Nos.41021061&41174012)
文摘Polar motion depicts the slow changes in the locations of the poles due to the earth's internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction.Through statistical analysis of the time series of the LS+AR model's short-term prediction residuals,we found that there is a good correlation of model prediction residuals between adjacent terms.These indicate that the preceding model prediction residuals and experiential adjustment matrixes can be used to correct the next prediction results,thereby forming a new LS+AR model with additional error correction that applies to polar motion prediction.Simulated predictions using this new model revealed that the proposed method can improve the accuracy and reliability of polar motion prediction.In fact,the accuracies of ultra short-term and short-term predictions using the new model were equal to the international best level at present.
基金sponsored by the National Basic Research Program of China(Grant No.2012CB955202)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN203)the National Natural Science Foundation of China(Grant No.41176013)
文摘In this paper,the role of constant optimal forcing(COF) in correcting forecast models was numerically studied using the well-known Lorenz 63 model.The results show that when we only consider model error caused by parameter error,which also changes with the development of state variables in a numerical model,the impact of such model error on forecast uncertainties can be offset by superimposing COF on the tendency equations in the numerical model.The COF can also offset the impact of model error caused by stochastic processes.In reality,the forecast results of numerical models are simultaneously influenced by parameter uncertainty and stochastic process as well as their interactions.Our results indicate that COF is also able to significantly offset the impact of such hybrid model error on forecast results.In summary,although the variation in the model error due to physical process is time-dependent,the superimposition of COF on the numerical model is an effective approach to reducing the influence of model error on forecast results.Therefore,the COF method may be an effective approach to correcting numerical models and thus improving the forecast capability of models.
基金Supported by National Natural Science Foundation of China under Grant Nos.11347008 and 11374017
文摘Bipartite entanglement, entanglement spectrum, and Schmidt gap in S=1 bond-alternative antiferromagnetic Heisenberg chain are investigated by the infinite time-evolving block decimation (iTEBD) method. The quantum phase transition (QPT) from the singlet-dimer phase to the Haldane phase can be detected by the singular behavior of bipartite entanglement, the sudden change of the entanglement spectrum, and the completely vanishing of the Schmidt gap. The critical point is determined to be around rc ^- 0.587, and the second-order character of the QPT is verified. Doubly degenerate entanglement spectra of both even and odd bonds are observed in the Haldane phase, by which one can distinguish the Haldane phase from the singlet-dimer phase easily. Nearest-neighbor antiferromagnetic correlations and next-nearest-neighbor ferromagnetic correlations are found in the whole parameter region. At the critical massless point, although exponentially decaying antiferromagnetie correlation is observed, it approaches to a constant value finally. Therefore, long-range correlations exist and the correlation length becomes divergent at the critical point.
基金supported by the National Natural Science Foundation of China (Nos.61071117 and 61003256)the Natural Science Foundation of Chongqing CSTC (No.2010BB2409)the Science and Technology Foundation of Chongqing Municipal Education Commission (No.KJ110519)
文摘Based on the genetic algorithm(GA),a new genetic probability decoding(GPD) scheme for forward error correction(FEC) codes in optical transmission systems is proposed.The GPD scheme can further offset the quantification error of the hard decision by making use of the channel interference probability and statistics information to restore the maximal likelihood transmission code word.The theoretical performance analysis and the simulation result show that the proposed GPD scheme has the advantages of lower decoding complexity,faster decoding speed and better decoding correction-error performance.Therefore,the proposed GPD algorithm is a better practical decoding algorithm.
基金supported by the National Basic Research Program of China(Grant No.2011CB921601)the National Natural Science Foundation of China(Grant No.11234008)+1 种基金the NSFC Project for Excellent Research Team(Grant Nos.61121064 and 11234008)Doctoral Program Foundation of the Ministry of Education China(Grant No.20111401130001)
文摘A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.