We propose a scheme to remotely prepare a general two-particle entangled state by using a bipartite entangled state and a tripartite entangled W state as the quantum channel. Our scheme consists of one sender and two ...We propose a scheme to remotely prepare a general two-particle entangled state by using a bipartite entangled state and a tripartite entangled W state as the quantum channel. Our scheme consists of one sender and two remote receivers. The sender can help either one of the receivers to remotely reconstruct the original state with the assistance of the other receiver's single-partlcle orthogona/measurement. We obtain the total success probability and discuss the classical communication cost in our remote state preparation scheme.展开更多
Several schemes have been proposed to prepare two-mode squeezed state and entanglement state betweenmotional states of a single trapped ion and light.Preparation of two-mode squeezed state is based on interaction ofa ...Several schemes have been proposed to prepare two-mode squeezed state and entanglement state betweenmotional states of a single trapped ion and light.Preparation of two-mode squeezed state is based on interaction ofa trapped ion located in light cavity with cavity field.Preparation of entanglement state is based on interaction of atrapped ion located in light cavity with cavity field and a traveling wave light field.展开更多
We present a scheme for probabilistic remote preparation of a tripartite qutrit entangled state with a partial tripartite qutrit entangled state and a partial bipartite qutrit entangled state as the quantum channel. I...We present a scheme for probabilistic remote preparation of a tripartite qutrit entangled state with a partial tripartite qutrit entangled state and a partial bipartite qutrit entangled state as the quantum channel. It is found that a bipartite qutrit orthogonal projective measurement, an auxiliary qutrit particle, and the corresponding unitary transformation are required. A scheme for probabilistic remote preparation of a tripartite qudit equatorial entangled state by using a partial tripartite qudit entangled state and a partial bipartite qudit entangled state as the quantum channel is also proposed. We calculate the successful total probability and the total classical communication cost required in the RSP process, respectively.展开更多
We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which on...We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximal1y Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglernent of multiple coherent and squeezing states with desired amplitudes in a reasonable time.展开更多
A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states ...A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.展开更多
A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much b...A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.展开更多
We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs ...We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.展开更多
A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-...A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-dimensional non-maximally entangled states and a tripartite d-dimension non-maximally entangled state. It is shown that the sender can help either of the two receivers to remotely prepare the original state, and the N-particle projective measurement and the generalized Hadamard transformation are needed in this scheme. The total success probability and classical communication cost are calculated.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60578050 and 10434060 We would like to thank Dr. Yong-Jian Han and Dr. Zheng-Wei Zhou for their helpful suggestions on the topic of classical communication cost.
文摘We propose a scheme to remotely prepare a general two-particle entangled state by using a bipartite entangled state and a tripartite entangled W state as the quantum channel. Our scheme consists of one sender and two remote receivers. The sender can help either one of the receivers to remotely reconstruct the original state with the assistance of the other receiver's single-partlcle orthogona/measurement. We obtain the total success probability and discuss the classical communication cost in our remote state preparation scheme.
基金Supported by the Natural Science Foundation of Anhui Province of China under Grant No.090412060 Natural Science Foundation of the Education Committee of Anhui Province of China under Grant No.KJ2008A029
文摘Several schemes have been proposed to prepare two-mode squeezed state and entanglement state betweenmotional states of a single trapped ion and light.Preparation of two-mode squeezed state is based on interaction ofa trapped ion located in light cavity with cavity field.Preparation of entanglement state is based on interaction of atrapped ion located in light cavity with cavity field and a traveling wave light field.
基金supported by the Natural Science Foundation of Education Bureau of Jiangsu Province under Grant No.05KJD140035the Program for Excellent Talents in Huaiyin Teachers College
文摘We present a scheme for probabilistic remote preparation of a tripartite qutrit entangled state with a partial tripartite qutrit entangled state and a partial bipartite qutrit entangled state as the quantum channel. It is found that a bipartite qutrit orthogonal projective measurement, an auxiliary qutrit particle, and the corresponding unitary transformation are required. A scheme for probabilistic remote preparation of a tripartite qudit equatorial entangled state by using a partial tripartite qudit entangled state and a partial bipartite qudit entangled state as the quantum channel is also proposed. We calculate the successful total probability and the total classical communication cost required in the RSP process, respectively.
基金The project partially supported by the National Fundamental Research Program of China under Grant No. 2005CB724508 and National Natural Science Foundation of China under Grant Nos. 60478029, 10575040, and 90503010 Acknowledgments The authors thank Prof. Ying Wu for many enlighten- ing discussions.
文摘We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximal1y Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglernent of multiple coherent and squeezing states with desired amplitudes in a reasonable time.
基金supported by the National Natural Science Foundation of China under Grants No. 61100205, No. 61100208the Project of the Fundamental Research Funds for the Central Universities under Grant No. 2013RC0307
文摘A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20103401110007the National Natural Science Foundation of China under Grant Nos.10975001 and 10874122+1 种基金the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ018the Science Research Foundation of Anhui University for Youth under Grant No.2009QN017B
文摘A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060357003
文摘We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060357003
文摘A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-dimensional non-maximally entangled states and a tripartite d-dimension non-maximally entangled state. It is shown that the sender can help either of the two receivers to remotely prepare the original state, and the N-particle projective measurement and the generalized Hadamard transformation are needed in this scheme. The total success probability and classical communication cost are calculated.