期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MacBERT⁃BiLSTM和注意力机制的短文本分类研究
被引量:
1
1
作者
王道康
张吴波
《现代电子技术》
2023年第21期123-128,共6页
针对中文短文本上下文依赖性强,特征信息难以提取的问题,提出一种融合MacBERT、双向长短期记忆神经网络(BiLSTM)、注意力(Attention)机制的短文本分类模型方法。利用预训练模型MacBERT得到动态词向量,输入BiLSTM模型中提取上下文关系特...
针对中文短文本上下文依赖性强,特征信息难以提取的问题,提出一种融合MacBERT、双向长短期记忆神经网络(BiLSTM)、注意力(Attention)机制的短文本分类模型方法。利用预训练模型MacBERT得到动态词向量,输入BiLSTM模型中提取上下文关系特征。结合注意力机制分配不同的权重值,最后使用Softmax分类器得到分类结果。研究表明,该模型在THUCNews数据集上F1值达到了95.63%,相较于基准模型BERT提高了2.18%,验证了其在短文本分类任务中的可行性和有效性。
展开更多
关键词
短文本
文本分类
MacBERT
BiLSTM
ATTENTION
纠错掩码
特征加权
语义向量
下载PDF
职称材料
题名
基于MacBERT⁃BiLSTM和注意力机制的短文本分类研究
被引量:
1
1
作者
王道康
张吴波
机构
湖北汽车工业学院电气与信息工程学院
出处
《现代电子技术》
2023年第21期123-128,共6页
基金
湖北省重点研究项目(TA02002)
湖北省中央引导地方科技发展专项(2018ZYYD007)。
文摘
针对中文短文本上下文依赖性强,特征信息难以提取的问题,提出一种融合MacBERT、双向长短期记忆神经网络(BiLSTM)、注意力(Attention)机制的短文本分类模型方法。利用预训练模型MacBERT得到动态词向量,输入BiLSTM模型中提取上下文关系特征。结合注意力机制分配不同的权重值,最后使用Softmax分类器得到分类结果。研究表明,该模型在THUCNews数据集上F1值达到了95.63%,相较于基准模型BERT提高了2.18%,验证了其在短文本分类任务中的可行性和有效性。
关键词
短文本
文本分类
MacBERT
BiLSTM
ATTENTION
纠错掩码
特征加权
语义向量
Keywords
short text
text classification
MacBERT
BiLSTM
attention
error correction mask
feature weighting
semantic vector
分类号
TN919-34 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MacBERT⁃BiLSTM和注意力机制的短文本分类研究
王道康
张吴波
《现代电子技术》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部