Describes a new architecture of a parallel robot with six degrees of freedom and focuses on improving orientation accuracy of movable platform in mechanism, error correction and control methods. A set of formulations ...Describes a new architecture of a parallel robot with six degrees of freedom and focuses on improving orientation accuracy of movable platform in mechanism, error correction and control methods. A set of formulations about inverse kinematics, Jacobin matrix, and forward kinematics for the high precision 6-HTRT parallel robots is presented. The analysis of errors existing in the manipulator is discussed and a novel approach for error correction is advanced. By DSP technique, inverse kinematics is solved in real time conditions with high precision and the hardware control system is given. The experimental results demonstrate the effectiveness of the proposed technique.展开更多
Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carr...Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of engine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field- of- view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.展开更多
文摘Describes a new architecture of a parallel robot with six degrees of freedom and focuses on improving orientation accuracy of movable platform in mechanism, error correction and control methods. A set of formulations about inverse kinematics, Jacobin matrix, and forward kinematics for the high precision 6-HTRT parallel robots is presented. The analysis of errors existing in the manipulator is discussed and a novel approach for error correction is advanced. By DSP technique, inverse kinematics is solved in real time conditions with high precision and the hardware control system is given. The experimental results demonstrate the effectiveness of the proposed technique.
文摘Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of engine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field- of- view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.