The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier tra...The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier transform infrared spectroscopy),BET(specific surface area),and BJH(pore size distribution).The results indicate that the removal rate of phosphate(100 mg/L)in 50 mL phosphorus wastewater reaches at 99.9% as the dosage of MSWI fly ash being 0.9000 g under room temperature.The specific surface area of MSWI fly ash is less than 6.1 m2/g and the total pore volume is below 0.021 cm3/g,suggesting that the absorption capacity of calcite is too weak to play an important role in phosphate removal.SEM images show that drastic changes had taken place on its specific surface shape after reaction,and EDS tests indicate that some phosphate precipitates are formed and attached onto MSWI fly ash particles.Chemical precipitation is the main manner of phosphate removal and the main reaction is: 3Ca2++2 PO4 3-+xH2O→Ca3(PO4)2↓·xH2O.Besides,XRD tests show that the composition of MSWI fly ash is complex,but CaSO4 is likely to be the main source of Ca2+.The soluble heavy metals in MSWI fly ash are stabilized by phosphate.展开更多
The training set of a universal near infrared (NIR) model for quantitative analysis of a drug should cover as many samples of this drug in the market as possible. Inevitably the model may fail for new products that ha...The training set of a universal near infrared (NIR) model for quantitative analysis of a drug should cover as many samples of this drug in the market as possible. Inevitably the model may fail for new products that have different excipients and production processes. In such circumstances the model should be updated. We here propose a new strategy to iteratively update a universal NIR quantitative model for azithromycin. We prove that universal quantitative models generated from this new strategy are comparably effective for azithromycin injection powders and azithromycin tablets, compared to the strategy using hierarchical clustering method which we reported previously. Furthermore, we establish the correlation coefficient r between a new sample and the training set samples can be used to decide whether or not the model should be updated.展开更多
基金Projects(51108100,50808184)supported by the National Natural Science Foundation of ChinaProject(100Z007)supported by the Ministry of Education of China+1 种基金Project(200103YB020)supported by Foundation of Guangxi Educational Committee,ChinaProject supported by Guangxi Normal University Education Development Foundation for Young Scholars,China
文摘The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier transform infrared spectroscopy),BET(specific surface area),and BJH(pore size distribution).The results indicate that the removal rate of phosphate(100 mg/L)in 50 mL phosphorus wastewater reaches at 99.9% as the dosage of MSWI fly ash being 0.9000 g under room temperature.The specific surface area of MSWI fly ash is less than 6.1 m2/g and the total pore volume is below 0.021 cm3/g,suggesting that the absorption capacity of calcite is too weak to play an important role in phosphate removal.SEM images show that drastic changes had taken place on its specific surface shape after reaction,and EDS tests indicate that some phosphate precipitates are formed and attached onto MSWI fly ash particles.Chemical precipitation is the main manner of phosphate removal and the main reaction is: 3Ca2++2 PO4 3-+xH2O→Ca3(PO4)2↓·xH2O.Besides,XRD tests show that the composition of MSWI fly ash is complex,but CaSO4 is likely to be the main source of Ca2+.The soluble heavy metals in MSWI fly ash are stabilized by phosphate.
文摘The training set of a universal near infrared (NIR) model for quantitative analysis of a drug should cover as many samples of this drug in the market as possible. Inevitably the model may fail for new products that have different excipients and production processes. In such circumstances the model should be updated. We here propose a new strategy to iteratively update a universal NIR quantitative model for azithromycin. We prove that universal quantitative models generated from this new strategy are comparably effective for azithromycin injection powders and azithromycin tablets, compared to the strategy using hierarchical clustering method which we reported previously. Furthermore, we establish the correlation coefficient r between a new sample and the training set samples can be used to decide whether or not the model should be updated.