The volume emission rate (VER) of airglow can be used to investigate atmospheric processes. Satellite-based limb measurement of atmosphere is able to obtain the VER profile of airglow with high vertical resolution. Ho...The volume emission rate (VER) of airglow can be used to investigate atmospheric processes. Satellite-based limb measurement of atmosphere is able to obtain the VER profile of airglow with high vertical resolution. However, the traditional one-dimensional retrieval techniques for VER inversion fail to retrieve horizontal structure of VER profile. Thus, the tomographic technique based on the maximum probability is applied to retrieving two-dimensional VER profile of airglow from infrared limb measurement. This technique could process the observed data with low signal-to-noise ratio caused by the observation angle of less than 180° due to the solid nature of the Earth. For saving the processing time and improving the computing speed of VER inversion, serial tables for storing the large sparse matrix for radiance simulation and a large dataset during iterative estimate of VER are presented. The index and weighting factor of line of sight (LOS) through each grid are saved in initial estimate to avoid being computed repeatedly. Furthermore, the product of observed radiance and corresponding weighting factor obtained in initial iteration is stored as weighted observed radiance for the iterative calculation subsequently. Based on the improved algorithm, the VER of airglow is inversed through the tomographic technique. The full width of half maximum (FWHM) of error is 1.78% and the offset of the peak percentage error is 0.22% after 40 iterations for final VER. Comparison of assumed and retrieved VER profiles suggests that VER can be retrieved with a bias of 15% between 10 km and 90 km above the LayerMin (6384 km from the Earth center), and with a bias of 8% for altitude from 30 km to 60 km with vertical resolution of 1 km after 40 iterations. After improvements, the computation speed of VER inversion for once can be improved by 29.6 times for 700 images of 1/3 orbit, and accordingly, the processing time will be reduced from 3 hours and 11 minutes to only 6 minutes. In conclusion, the improvements to tomographic inversion of VER of airglow proposed in this paper are effective and significant.展开更多
Based on the optimal estimation method, a satellite XCO2 retrieval algorithm was constructed by combining LBLRTM with VLIDORT. One-year GOSAT/TANSO observations over four TCCON stations were tested by our algorithm, a...Based on the optimal estimation method, a satellite XCO2 retrieval algorithm was constructed by combining LBLRTM with VLIDORT. One-year GOSAT/TANSO observations over four TCCON stations were tested by our algorithm, and retrieval results were compared with GOSAT L2 B products and ground-based FTS measurements. Meanwhile, the influence of CO2 line mixing effect on retrieval was estimated, and the research showed that neglecting CO2 line mixing effect could result in approximately 0.25% XCO2 underestimation. The accuracy of XCO2 retrievals was similar to GOSAT L2 B products at cloud-free footprints with aerosol optical depth less than 0.3, and 1% accuracy of XCO2 retrievals can be reached based on the validation result with TCCON measurements.展开更多
基金Under the auspices of National High Technology Research and Development Program of China(No.2006AA12Z102)Graduate Innovation Fund of Jilin University(No.20091023)
文摘The volume emission rate (VER) of airglow can be used to investigate atmospheric processes. Satellite-based limb measurement of atmosphere is able to obtain the VER profile of airglow with high vertical resolution. However, the traditional one-dimensional retrieval techniques for VER inversion fail to retrieve horizontal structure of VER profile. Thus, the tomographic technique based on the maximum probability is applied to retrieving two-dimensional VER profile of airglow from infrared limb measurement. This technique could process the observed data with low signal-to-noise ratio caused by the observation angle of less than 180° due to the solid nature of the Earth. For saving the processing time and improving the computing speed of VER inversion, serial tables for storing the large sparse matrix for radiance simulation and a large dataset during iterative estimate of VER are presented. The index and weighting factor of line of sight (LOS) through each grid are saved in initial estimate to avoid being computed repeatedly. Furthermore, the product of observed radiance and corresponding weighting factor obtained in initial iteration is stored as weighted observed radiance for the iterative calculation subsequently. Based on the improved algorithm, the VER of airglow is inversed through the tomographic technique. The full width of half maximum (FWHM) of error is 1.78% and the offset of the peak percentage error is 0.22% after 40 iterations for final VER. Comparison of assumed and retrieved VER profiles suggests that VER can be retrieved with a bias of 15% between 10 km and 90 km above the LayerMin (6384 km from the Earth center), and with a bias of 8% for altitude from 30 km to 60 km with vertical resolution of 1 km after 40 iterations. After improvements, the computation speed of VER inversion for once can be improved by 29.6 times for 700 images of 1/3 orbit, and accordingly, the processing time will be reduced from 3 hours and 11 minutes to only 6 minutes. In conclusion, the improvements to tomographic inversion of VER of airglow proposed in this paper are effective and significant.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA12A104-3)the Strategic Priority Research Program(Grant No.XDA05100300)+4 种基金the European Commission’s Seventh Framework Program"PANDA"(Grant No.FP7-SPACE-2013-1)the Public Industry-specific Fund for Meteorology(Grant No.GYHY201106045)the 4th and 5th GOSAT/TANSO Joint Research Project,National Basic Research Program of China(Grant No.2013CB955801)National Natural Science Foundation of China(Grant No.41175030)China Earth Observation Project(Grant No.E310/1112)
文摘Based on the optimal estimation method, a satellite XCO2 retrieval algorithm was constructed by combining LBLRTM with VLIDORT. One-year GOSAT/TANSO observations over four TCCON stations were tested by our algorithm, and retrieval results were compared with GOSAT L2 B products and ground-based FTS measurements. Meanwhile, the influence of CO2 line mixing effect on retrieval was estimated, and the research showed that neglecting CO2 line mixing effect could result in approximately 0.25% XCO2 underestimation. The accuracy of XCO2 retrievals was similar to GOSAT L2 B products at cloud-free footprints with aerosol optical depth less than 0.3, and 1% accuracy of XCO2 retrievals can be reached based on the validation result with TCCON measurements.