期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
结合红外显著性目标导引的改进YOLO网络的智能装备目标识别研究 被引量:2
1
作者 侯毅苇 李林汉 王彦 《红外技术》 CSCD 北大核心 2020年第7期644-650,共7页
为了提升实际作战环境下目标检测识别的性能,本文提出了一种基于红外显著性目标导引的改进YOLO(You Only Look Once)网络的智能装备目标识别算法,该算法利用红外图像提供目标可能的位置引导可见光图像中的深度自主学习,提升检测与识别... 为了提升实际作战环境下目标检测识别的性能,本文提出了一种基于红外显著性目标导引的改进YOLO(You Only Look Once)网络的智能装备目标识别算法,该算法利用红外图像提供目标可能的位置引导可见光图像中的深度自主学习,提升检测与识别的实时性。改进YOLO-V3识别网络是以Darknet-53为基础网络架构,利用DenseNet代替具有较低分辨率的原始转移层,同时采用分类网络预训练、多尺度检测网络训练等措施增强特征传播,复用和融合的性能。仿真实验结果表明,本文提出的模型可以有效地提高现有目标检测与识别的性能。 展开更多
关键词 目标识别 红外显著性 目标导引 深度学习 YOLO-V3 智能装备
下载PDF
结合tetrolet与红外显著性特征提取的红外与可见光融合 被引量:1
2
作者 姜迈 沙贵君 李宁 《科学技术与工程》 北大核心 2022年第30期13398-13405,共8页
针对红外与可见光图像融合过程中红外热目标不突出、纹理及边缘细节易缺失等问题,提出一种结合tetrolet变换域与红外显著目标特征提取的融合方法。首先,在鲁棒加速特征(speed-up robust features,SURF)框架内构建基于梯度直方图(histogr... 针对红外与可见光图像融合过程中红外热目标不突出、纹理及边缘细节易缺失等问题,提出一种结合tetrolet变换域与红外显著目标特征提取的融合方法。首先,在鲁棒加速特征(speed-up robust features,SURF)框架内构建基于梯度直方图(histogram of oriented gradient,HOG)的特征点描述符实现红外与可见光图像的精确匹配;其次,基于贝塞尔面结合背景及目标进行自适应抑制完成红外目标显著性特征提取;接着,将处理后的红外与可见光图像通过tetrolet多尺度变换分解为低频和高频分量;然后,利用基于局部能量和相对亮度自适应规则对低频分量进行融合,对高频分量采用基于局部空间频率自适应融合规则;最后,将融合的低频分量与高频分量通过tetrolet逆变换,以获得最终的融合结果。实验结果表明,本文算法对不同场景下的红外与可见光图像的融合效果不但主观上具有显著的目标特征,同时背景纹理和边缘细节清晰,整体对比度适宜,运行时间较其他算法得到了明显提升,并且在客观评价指标上也取得了较好的效果。 展开更多
关键词 图像融合 图像匹配 红外显著性特征 tetrolet变换
下载PDF
基于SURF-HOG与显著性特征的红外可见光图像配准融合 被引量:4
3
作者 姜迈 郑岩 《激光与红外》 CAS CSCD 北大核心 2023年第2期261-270,共10页
针对现有红外与可见光图像配准不精确,边缘及细节纹理缺失,融合时间较长,不能突出重点目标等不足,提出一种基于SURF-HOG描述符与红外显著性特征的红外与可见光图像融合方法。首先,在红外与可见光图像配准阶段,在SURF(Speed-Up Robust Fe... 针对现有红外与可见光图像配准不精确,边缘及细节纹理缺失,融合时间较长,不能突出重点目标等不足,提出一种基于SURF-HOG描述符与红外显著性特征的红外与可见光图像融合方法。首先,在红外与可见光图像配准阶段,在SURF(Speed-Up Robust Features,SURF)框架内构建基于HOG(Histogram of Oriented Gradient,HOG)的特征点描述符,并通过NNDR(Nearest Neighbor Distance Ratio,NNDR)进行红外与可见光图像的特征点匹配;其次,在显著特征提取阶段,先通过四叉树算法对源红外图像分解,然后通过贝塞尔插值法重建红外图像背景,接着分别对红外图像中的背景及目标进行自适应抑制以提取目标红外显著性特征;最后,结合已配准的可见光图像与重建后的红外图像以获取最终融合结果。实验结果表明,所提方法对不同场景下的红外与可见光图像具有较高的配准精度,不同场景下的融合结果不但主观视觉上具有显著的目标特征,同时背景纹理和边缘细节清晰,整体对比度适宜,运行时间最短,并且在客观评价指标上也取得了较好的效果。 展开更多
关键词 红外与可见光图像 SURF-HOG 四叉树分解 红外显著性特征 配准融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部