以P型(100)取向的单晶硅片为衬底,采用微波等离子体化学气相沉积(MPCVD)法,通过在反应气源中添加不同比例的CO2制备光学级金刚石膜。通过Raman光谱、X射线衍射(XRD)和扫描电子显微镜(SEM)表征金刚石膜的结晶质量、晶粒取向和表面形貌。...以P型(100)取向的单晶硅片为衬底,采用微波等离子体化学气相沉积(MPCVD)法,通过在反应气源中添加不同比例的CO2制备光学级金刚石膜。通过Raman光谱、X射线衍射(XRD)和扫描电子显微镜(SEM)表征金刚石膜的结晶质量、晶粒取向和表面形貌。结果表明:增加反应气源中CO2/CH4流量比,在不改变金刚石膜物相纯度的情况下,有利于提高金刚石薄膜的结晶质量;适量的CO2/CH4流量比有利于获得晶粒形貌规则、完整且尺寸均匀的高[111]取向的金刚石膜。傅里叶变换红外光谱(FT-IR)(红外光透过率)测试发现晶界密度小、晶粒尺寸均匀、形貌规则且表面平整的自支撑金刚石膜具有更高的红外(IR)透过率,表明在反应气源中适量地引入CO2有利于提高金刚石膜的光学性能,这可能与CO2引入后产生的含氧基团能抑制非金刚石相,促进取向金刚石相的生长有关;在微波功率6 k W、气压13 k Pa、基片温度850℃、CH4流量为15 ml·min-1(标准状况)的条件下,CO2/CH4流量比为0.45时可制备出具有高质量和高红外透过率的金刚石光学膜。展开更多
文摘以P型(100)取向的单晶硅片为衬底,采用微波等离子体化学气相沉积(MPCVD)法,通过在反应气源中添加不同比例的CO2制备光学级金刚石膜。通过Raman光谱、X射线衍射(XRD)和扫描电子显微镜(SEM)表征金刚石膜的结晶质量、晶粒取向和表面形貌。结果表明:增加反应气源中CO2/CH4流量比,在不改变金刚石膜物相纯度的情况下,有利于提高金刚石薄膜的结晶质量;适量的CO2/CH4流量比有利于获得晶粒形貌规则、完整且尺寸均匀的高[111]取向的金刚石膜。傅里叶变换红外光谱(FT-IR)(红外光透过率)测试发现晶界密度小、晶粒尺寸均匀、形貌规则且表面平整的自支撑金刚石膜具有更高的红外(IR)透过率,表明在反应气源中适量地引入CO2有利于提高金刚石膜的光学性能,这可能与CO2引入后产生的含氧基团能抑制非金刚石相,促进取向金刚石相的生长有关;在微波功率6 k W、气压13 k Pa、基片温度850℃、CH4流量为15 ml·min-1(标准状况)的条件下,CO2/CH4流量比为0.45时可制备出具有高质量和高红外透过率的金刚石光学膜。