High-resolution ro-vibrational spectroscopy of ^15N2^16O in 1650-3450 cm-1 region is studied using highly enriched isotopologue sample. The positions of more than 7300 lines of ^15N2^16O isotopologue were measured wit...High-resolution ro-vibrational spectroscopy of ^15N2^16O in 1650-3450 cm-1 region is studied using highly enriched isotopologue sample. The positions of more than 7300 lines of ^15N2^16O isotopologue were measured with a typical accuracy of 5.0×10-4 cm-1. The transitions were rovibrationally assigned on the basis of the global effective Hamiltonian model. The band by band analysis allowed for the determination of the rovibrational parameters of a total of 73 bands. 29 of them are newly reported and more rotational transitions have been observed for the others. The maximum deviation of the preidictions of the effective Hamiltonian model is up to 0.70 cm-1 for the ^15N2^16O species.展开更多
According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under...According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.展开更多
We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VU...We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VUV) laser to photoionize the IR excited species, high-resolution IR spectra of polyatomic neutrals can be obtained with high sensitivity. The fact that this IR-VUV-photoion (IR-VUV-PI) method is based on VUV photoionization probe, and thus, allows the identification of the neutral IR absorber, makes it applicable for IR spectroscopy measurements of isotopemers, radicals, and clusters, which usually exist as impure samples. The highly resolved IR-VUV-PI measurements achieved using the single mode IR-OPO laser have made possible the selection of single rovibrational states of CH3X (X=Br and I), C2H4, and C3H4 for VUV-pulsed field ionization-photoelectron (VUV-PFI-PE) measurements, resulting in rovibrationally resolved photoelectron spectra for these polyatomic molecules. These experiments show that the signal- to-noise ratios of the IR-VUV-PI and IR-VUV-PFI-PE spectra obtained by employing the high-resolution IR-OPO laser are significantly higher than those observed in previous IR-VUV-PI and IR-VUV-PFI-PE studies using a low-resolution IR-OPO laser. Further improvement in sensitivity of IR-VUV-PI and IR- VUV-PFI-PE measurements by using the collinear arrangement of IR-VUV lasers and molecular beam is discussed.展开更多
The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which ...The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which results in low calculation precision of parameters related with land surface temperature. A new fusion method is put forward where the characteristics of the high spatial resolution of VNIR (visible and near infrared) data and the high temporal resolution of thermal infrared data are fully explored in this paper. Non-linear fusion is implemented to obtain the land surface temperature in high spatial resolution and the high temporal resolution between the land surface parameters estimated from VNIR data and the thermal infrared data by means of GA-SOFM (genetic algorithms & self-organizing feature maps)-ANN (artificial neural net-work). Finally, the method is verified by ASTER satellite data. The result shows that the method is simple and convenient and can rapidly capture land surface temperature distribution of higher resolution with high precision.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.20903085), the NKBRSF 2010CB9230, and RFBR-Russia (No.06-05- 39016). The support of the Groupement de Recherche International SAMIA (Spectroscopie d'Absorption des Mol@cules d'Interet Atmospherique) between CNRS (France), RFBR (Russia) and CAS (China) is also acknowledged.
文摘High-resolution ro-vibrational spectroscopy of ^15N2^16O in 1650-3450 cm-1 region is studied using highly enriched isotopologue sample. The positions of more than 7300 lines of ^15N2^16O isotopologue were measured with a typical accuracy of 5.0×10-4 cm-1. The transitions were rovibrationally assigned on the basis of the global effective Hamiltonian model. The band by band analysis allowed for the determination of the rovibrational parameters of a total of 73 bands. 29 of them are newly reported and more rotational transitions have been observed for the others. The maximum deviation of the preidictions of the effective Hamiltonian model is up to 0.70 cm-1 for the ^15N2^16O species.
基金Supported by the National Natural Science Foundation of China(No.41101503)the National Social Science Foundation of China(No.11&ZD161)Graduate Innovative Scientific Research Project of Chongqing Technology and Business University(No.yjscxx2014-052-29)
文摘According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.
文摘We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VUV) laser to photoionize the IR excited species, high-resolution IR spectra of polyatomic neutrals can be obtained with high sensitivity. The fact that this IR-VUV-photoion (IR-VUV-PI) method is based on VUV photoionization probe, and thus, allows the identification of the neutral IR absorber, makes it applicable for IR spectroscopy measurements of isotopemers, radicals, and clusters, which usually exist as impure samples. The highly resolved IR-VUV-PI measurements achieved using the single mode IR-OPO laser have made possible the selection of single rovibrational states of CH3X (X=Br and I), C2H4, and C3H4 for VUV-pulsed field ionization-photoelectron (VUV-PFI-PE) measurements, resulting in rovibrationally resolved photoelectron spectra for these polyatomic molecules. These experiments show that the signal- to-noise ratios of the IR-VUV-PI and IR-VUV-PFI-PE spectra obtained by employing the high-resolution IR-OPO laser are significantly higher than those observed in previous IR-VUV-PI and IR-VUV-PFI-PE studies using a low-resolution IR-OPO laser. Further improvement in sensitivity of IR-VUV-PI and IR- VUV-PFI-PE measurements by using the collinear arrangement of IR-VUV lasers and molecular beam is discussed.
基金Supported by the Key Laboratory of Mapping from Space of State Bureau of Surveying and Mapping(No.200815), the Natural Science Foundation of China (NSFC 40371087, 40701119), the Major State Basic Research Development Program of China (973 Program) (No. 2007CB714401), the National High Technology Research and Development Program of China (863 Program) (No. 2007AA10Z201 ).
文摘The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which results in low calculation precision of parameters related with land surface temperature. A new fusion method is put forward where the characteristics of the high spatial resolution of VNIR (visible and near infrared) data and the high temporal resolution of thermal infrared data are fully explored in this paper. Non-linear fusion is implemented to obtain the land surface temperature in high spatial resolution and the high temporal resolution between the land surface parameters estimated from VNIR data and the thermal infrared data by means of GA-SOFM (genetic algorithms & self-organizing feature maps)-ANN (artificial neural net-work). Finally, the method is verified by ASTER satellite data. The result shows that the method is simple and convenient and can rapidly capture land surface temperature distribution of higher resolution with high precision.