Background: Safflower regeneration through tissue culture has long been limited to low frequency and lack of an efficient protocol that suitable for most safflower cultivars. In past decades, researches had been carri...Background: Safflower regeneration through tissue culture has long been limited to low frequency and lack of an efficient protocol that suitable for most safflower cultivars. In past decades, researches had been carried out to investigate safflower regeneration through tissue culture and great progress had been made. Objective: To investigate factors that affect safflower regeneration through tissue culture principally. Methods: This article summarized available literatures about advancements in safflower regeneration, especially discussed factors affecting safflower tissue culture in detail. Results: Safflower regeneration was fairly hard than other congeneric plants, such as chrysanthemum. The genotype, seedling age, type of explants, medium components, plant growth regulators and other additives all had specific influences on safflower tissue culture. More deepgoing researches need to be undertaken to establish an effective safflower regeneration system.展开更多
Two field trials were clone to evaluate the effects of plant density on the growth, development and yield of safflower. The results showed that plant density and season of growth had significant (P ≤ 0.01) effects ...Two field trials were clone to evaluate the effects of plant density on the growth, development and yield of safflower. The results showed that plant density and season of growth had significant (P ≤ 0.01) effects on growth, development, yield components, yield and oil content of safflower. Increasing safflower plant density from 100,000 to 250,000 plants ha^- significantly reduced plant height (13.2%-21.3%), branch number plant^-1 (37%-54.7%), leaf number plant^-1 (39%-39.2%), leaf area (19.5%-53%), plant spread (39.6%-54.4%), root length (28.1%-54.4%), plant biomass (17%-50%), capitula size (12%-12.7%), capitula number plant^-1 (39.5%-50.5%), seed number capitula~ (39%-45%), capitula weight (3.3%-3.6%), seed yield (67.9%-69.8%) and seed oil content (14.7%-20.8%). The reduction in vegetative growth, yield components, yield and oil content of safflower due to increased plant density was attributed to inter and intra-plant competition for light, nutrients and water necessary for growth and development. The differences between winter and summer grown safflower were attributed to difference in day and night temperature (DIF) and the average daily temperature which were optimum for safflower growth in winter. It was concluded that under Botswana conditions or in semi-arid areas, safflower should be planted at 50 cm × 20 cm or wider in order to maximize yield and oil content and allow the plants to express their maximum genetic potential.展开更多
基金Supported by the National Natural Science Foundation of China Granted Project(81173484)
文摘Background: Safflower regeneration through tissue culture has long been limited to low frequency and lack of an efficient protocol that suitable for most safflower cultivars. In past decades, researches had been carried out to investigate safflower regeneration through tissue culture and great progress had been made. Objective: To investigate factors that affect safflower regeneration through tissue culture principally. Methods: This article summarized available literatures about advancements in safflower regeneration, especially discussed factors affecting safflower tissue culture in detail. Results: Safflower regeneration was fairly hard than other congeneric plants, such as chrysanthemum. The genotype, seedling age, type of explants, medium components, plant growth regulators and other additives all had specific influences on safflower tissue culture. More deepgoing researches need to be undertaken to establish an effective safflower regeneration system.
文摘Two field trials were clone to evaluate the effects of plant density on the growth, development and yield of safflower. The results showed that plant density and season of growth had significant (P ≤ 0.01) effects on growth, development, yield components, yield and oil content of safflower. Increasing safflower plant density from 100,000 to 250,000 plants ha^- significantly reduced plant height (13.2%-21.3%), branch number plant^-1 (37%-54.7%), leaf number plant^-1 (39%-39.2%), leaf area (19.5%-53%), plant spread (39.6%-54.4%), root length (28.1%-54.4%), plant biomass (17%-50%), capitula size (12%-12.7%), capitula number plant^-1 (39.5%-50.5%), seed number capitula~ (39%-45%), capitula weight (3.3%-3.6%), seed yield (67.9%-69.8%) and seed oil content (14.7%-20.8%). The reduction in vegetative growth, yield components, yield and oil content of safflower due to increased plant density was attributed to inter and intra-plant competition for light, nutrients and water necessary for growth and development. The differences between winter and summer grown safflower were attributed to difference in day and night temperature (DIF) and the average daily temperature which were optimum for safflower growth in winter. It was concluded that under Botswana conditions or in semi-arid areas, safflower should be planted at 50 cm × 20 cm or wider in order to maximize yield and oil content and allow the plants to express their maximum genetic potential.