受体型蛋白酪氨酸磷酸酶Q(Receptor type protein tyrosine phosphatase Q,PTPRQ)作为一种蛋白酪氨酸磷酸酶,能催化不同的底物,参与多种细胞内的功能。PTPRQ基因突变可导致常染色体隐性和显性非综合征性耳聋DFNB84A型和DFNA73型耳聋的发...受体型蛋白酪氨酸磷酸酶Q(Receptor type protein tyrosine phosphatase Q,PTPRQ)作为一种蛋白酪氨酸磷酸酶,能催化不同的底物,参与多种细胞内的功能。PTPRQ基因突变可导致常染色体隐性和显性非综合征性耳聋DFNB84A型和DFNA73型耳聋的发生,两型耳聋的临床表型差异提示了其致病机制的不同。在内耳,PTPRQ主要位于前庭及耳蜗毛细胞纤毛基底部,参与耳蜗毛细胞纤毛束的成熟,对维持纤毛的形态和功能具有重要作用。目前世界上报道的与PTPRQ突变相关的耳聋家系有14个,多数隐性突变是因截短或缺失而影响了PTPRQ的酶结构域的功能,但是PTPRQ的显性突变致病机理仍不清楚。有关该基因显、隐性突变致病机制的更深入研究可为相关病例的针对性干预提供理论依据。展开更多
The principles for the modulus method and the percentage method are established and discussed in the part following Part Ⅰ of the series papers, in which we proposed the various algorithms of the strength method and ...The principles for the modulus method and the percentage method are established and discussed in the part following Part Ⅰ of the series papers, in which we proposed the various algorithms of the strength method and the work method. The samples of Wool/PET blended fibre bundles, the method of fibre-bundle tensile tests and the typical specific stress-extension curves from the fibre bundles with different blend ratios are the same as in Part Ⅰ. It can be found that the theoretical results estimated by the modulus and percentage methods accord with the experimental values highly though the calculations of the two methods are slightly more complex than those of the strength and work methods. Especially, using the modulus method can not only avoid the influence of the error caused by the determination of the tensile curve of no fibre breaking in stretching, Y(e), but also need not to know the tensile curves of mono-component fibre bundles in certain calculation. The latter advantage of the modulus method exists in the percentage method too, but it should adopt the improved calculation of ones.展开更多
基金supported by the National Natural Science Foundation of China (No. 81070794)the National Science Foundation for Young Scientists of China (No. 31100903)+3 种基金the Natural Fund Projects of Zhejiang ProvinceChina (No. Y2110399)the Ministry of Public Heath of Zhejiang ProvinceChina (No. 2009A135)
文摘受体型蛋白酪氨酸磷酸酶Q(Receptor type protein tyrosine phosphatase Q,PTPRQ)作为一种蛋白酪氨酸磷酸酶,能催化不同的底物,参与多种细胞内的功能。PTPRQ基因突变可导致常染色体隐性和显性非综合征性耳聋DFNB84A型和DFNA73型耳聋的发生,两型耳聋的临床表型差异提示了其致病机制的不同。在内耳,PTPRQ主要位于前庭及耳蜗毛细胞纤毛基底部,参与耳蜗毛细胞纤毛束的成熟,对维持纤毛的形态和功能具有重要作用。目前世界上报道的与PTPRQ突变相关的耳聋家系有14个,多数隐性突变是因截短或缺失而影响了PTPRQ的酶结构域的功能,但是PTPRQ的显性突变致病机理仍不清楚。有关该基因显、隐性突变致病机制的更深入研究可为相关病例的针对性干预提供理论依据。
文摘The principles for the modulus method and the percentage method are established and discussed in the part following Part Ⅰ of the series papers, in which we proposed the various algorithms of the strength method and the work method. The samples of Wool/PET blended fibre bundles, the method of fibre-bundle tensile tests and the typical specific stress-extension curves from the fibre bundles with different blend ratios are the same as in Part Ⅰ. It can be found that the theoretical results estimated by the modulus and percentage methods accord with the experimental values highly though the calculations of the two methods are slightly more complex than those of the strength and work methods. Especially, using the modulus method can not only avoid the influence of the error caused by the determination of the tensile curve of no fibre breaking in stretching, Y(e), but also need not to know the tensile curves of mono-component fibre bundles in certain calculation. The latter advantage of the modulus method exists in the percentage method too, but it should adopt the improved calculation of ones.