Long-term air contamination and pollution challenges in particulate matter(PM) have raised fervent concerns for public health, e.g., the PM physical damage or the bacteria and virus carried by the PM. The desired air ...Long-term air contamination and pollution challenges in particulate matter(PM) have raised fervent concerns for public health, e.g., the PM physical damage or the bacteria and virus carried by the PM. The desired air filter, seeking both high filtration efficiency and low pressure drop remains challenging. Here, we report a bio-inspired spindle-knot halloysite nanotube microsphere-incorporated nanofiber(HNM-NF) filter with the assembly and shape structures of the spider silk. The resulting HNM-NFs exhibit integrated properties of high surface energy, hydrophilicity and strong PM capture. The spindle-knot structures could shrink the outer pore size on two-dimensional(2 D) surface and construct the fluffy 3 D reticular architecture, facilitating high-efficiency air pollutant capture(>85.0%) while maintaining low resistance to airflow(~39 Pa). The spindle-knot construction method was applicable to various materials(i.e.,Al_(2)O_(3), ZnO and TiO_(2)) and volume production of the microsphere-incorporated NF cartridge. The diversified spindleknot construction will be valuable for adapting to meet different filtration requirements.展开更多
基金supported by the National Natural Science Foundation of China (21878341,51804343,41572036 and 51225403)the Natural Science Foundation of Hunan Province(2018JJ3670)the Key R&D Program of Hunan Province(2017GK2251)。
文摘Long-term air contamination and pollution challenges in particulate matter(PM) have raised fervent concerns for public health, e.g., the PM physical damage or the bacteria and virus carried by the PM. The desired air filter, seeking both high filtration efficiency and low pressure drop remains challenging. Here, we report a bio-inspired spindle-knot halloysite nanotube microsphere-incorporated nanofiber(HNM-NF) filter with the assembly and shape structures of the spider silk. The resulting HNM-NFs exhibit integrated properties of high surface energy, hydrophilicity and strong PM capture. The spindle-knot structures could shrink the outer pore size on two-dimensional(2 D) surface and construct the fluffy 3 D reticular architecture, facilitating high-efficiency air pollutant capture(>85.0%) while maintaining low resistance to airflow(~39 Pa). The spindle-knot construction method was applicable to various materials(i.e.,Al_(2)O_(3), ZnO and TiO_(2)) and volume production of the microsphere-incorporated NF cartridge. The diversified spindleknot construction will be valuable for adapting to meet different filtration requirements.