In order to study the correlations among quality indexes of tobacco leaf and contents of cellulose and lignin in upper leaves of flue-cured tobacco, 48 B2F flue-cured tobacco samples in seven counties of Wulin mountai...In order to study the correlations among quality indexes of tobacco leaf and contents of cellulose and lignin in upper leaves of flue-cured tobacco, 48 B2F flue-cured tobacco samples in seven counties of Wulin mountain area in 2011 and 2012 were used as test materials to measure the contents of cellulose and lignin in tobacco leaves and analyze the differences among varieties and between years. Meanwhile, correlations among contents of cellulose and lignin and appearance quality, physical characteristics, general chemical components and indexes of senso- ry quality were studied. The results showed that the contents of cellulose and lignin had no significant difference among years and varieties. Cellulose content was sig- nificantly correlated with some indexes of appearance qualities, physical indexes, general chemical compositions and sensory qualities. Lignin content was significantly correlated with grayness and oil content but not other quality indexes of tobacco leaf. It could be seen that the differences of cellulose and lignin contents between different years and among varieties were not significant. Cellulose content was closely correlated with quality indexes of tobacco leaf while lignin content had a small effect on tobacco leaf quality.展开更多
Study on oxidizing cellulose to 2.3-dialdehyde cellulose by sodium periodate (NalO4) was carried out. The effects of reaction conditions such as pH of solution, temperature, oxidant concentration, oxidation time. th...Study on oxidizing cellulose to 2.3-dialdehyde cellulose by sodium periodate (NalO4) was carried out. The effects of reaction conditions such as pH of solution, temperature, oxidant concentration, oxidation time. the particle size of 2,3-dialdehyde cellulose and alkali treatment temperature on the dialdehyde concentration ot cellulose were investigated in detail, The results show that the aldehyde group content was created while reaction temperature and alkali treatment temperature increased. The most principal factors affecting the aldehyde group content of 2,3-dialdehyde cellulose were found out and the best oxidation conditions were as follows: the pH was 2. the reaction temperature was 45℃. the mass ratio of cellulose to NalO4 was 1/2, the reaction time was 4 h, the alkali treatment temperature was 70℃ and smaller particle size was 0.80 mm.展开更多
A detailed mechanism analysis of cellulose pyrolysis was carried out according to the previous experimental results. On the basis of the Brodio-Shafizadeh model, a modified two-stage model was proposed to simulate the...A detailed mechanism analysis of cellulose pyrolysis was carried out according to the previous experimental results. On the basis of the Brodio-Shafizadeh model, a modified two-stage model was proposed to simulate the formation and decomposition of active cellulose (AC) and several main organic compounds, such as levoglucosan (LG), hydroxyl-acetaldehyde (HAA), acetol and furfural etc. During pryolysis, the temperature rise of cellulose can be divided into three stages. In the second stage, cellulose undergoes a main decomposition process in which the reaction temperature remains rather low because of the endothermic cracking of glucosidic bond of AC during the formation of LG. The components density of bio-oil, including LG and other competitive compounds, increased rapidly with the increase of temperature during the first stage. However, in the main decomposition process, LG density in bio-oil had an obvious decrease, while the competitive products appeared to increase gradually, which means the ring-opening and reforming reaction of pyranoid ring are superior to LG formation in high temperature.The secondary reaction of volatile components occurs largely in gaseous phase rather than in the solid phase. Short residence time of volatile materials in high temperature region will be advantageous to a high production of LG,which may otherwise decompose quickly under high temperature. An optimum yield of LG could be obtained when radiant source temperature is in the range of 730---920K and gas residence time is less than 1 s. In addition, the reaction temperature has a stronger effect than gas residence time on the formation of HAA, acetol, formaldehyde and furfural etc.展开更多
Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly(...Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly( styrener-acrylonitrile)-b- poly ( 1, 1, 2, 2-tetrahydroperfluorooctyl methacrylate) (PSAN-b-PFOMA), as steric stabilizers. The structure and the particle morphology of the product were characterised by FT-IR and SEM. In addition, the effects of the stabilizer on the surface properties of the products were investigated in detail. Results indicate that the surface free energy of the poly (AN-r-VAc) (PAVAc) film decreases dramatically because of the existence of the stabilizer. And, when the initial concentration of the monomer was 10% (the mass (g) of monomer to the volume (mL) of ScCO2 ) the optimal concentration of the stabilizer is about 5% (w/w% to monomers).展开更多
The structural evolution of the chars from pyrolysis of biomass components (cellulose, hemicellulose and lignin) in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the...The structural evolution of the chars from pyrolysis of biomass components (cellulose, hemicellulose and lignin) in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the C content increased at the expense of H and O contents during the chars formation. The values of AH/C/ZSO/c for the formation of cellulose and hemicellulose chars were close to 2, indicating that dehydration was the dominant reaction. Meanwhile, the value was more than 3 for lignin char formation, suggesting that the occurrence of demethoxylation was prevalent. FTIR and XRD analyses further disclosed that the cellulose pyrolysis needed to break down the stable crystal structure prior to the severe depolymerization. As for hemicellulose and lignin pyrolysis, the weak branches and linkages decomposed firstly, followed by the major decomposition. After the devolatilization at the main pyrolysis stage, the three components encountered a slow carbonization process to form condensed aromatic chars. The SEM results showed that the three components underwent different devolatilization behaviors, which induced various surface mornhologies of the chars.展开更多
The scientific concept of probiotics has been widely accepted throughout the last decades; consequently, its industrial production and commercialization have been increased. This is only the beginning since a recent g...The scientific concept of probiotics has been widely accepted throughout the last decades; consequently, its industrial production and commercialization have been increased. This is only the beginning since a recent global probiotic market analysis estimated an annual growth, boosted mainly by a rising request from the Asian and European consumer in the next 5 years. So the pharmaceutical industry needs to develop new dosage forms containing probiotic microorganisms in order to offer consumers a variety of products. Different kinds of matrix tablets with Lactobacillus coryniformis CECT 5711 were designed to protect this strain from the technological process and harsh gastrointestinal conditions up until their arrival in the gut, as well as environmental conditions during their storage. With this aim, various retarding polymers were combined so as to get controlled release tablets. All formulations were evaluated in terms of technological processability, bacterial viability and stability. Finally, an optimal formulation with Methocel K-15 M EP, Eudragit L-100 and alginate sodium, which contain Lactobacillus coryniformis CECT 5711, was selected due to the fact that it assured an excellent survival of the microorganisms after their exposition to all conditions mentioned above, besides it will be able to improve human's health.展开更多
The secondary structure of different Iβ cellulose was analyzed by a molecular dynamics sim- ulation with MARTINI coarse-grained force field, where each chain of the cellulose includes 40 D-glucoses units. Calculation...The secondary structure of different Iβ cellulose was analyzed by a molecular dynamics sim- ulation with MARTINI coarse-grained force field, where each chain of the cellulose includes 40 D-glucoses units. Calculation gives a satisfied description about the secondary structure of the cellulose. As the chain number increasing, the cellulose becomes the form of a helix, with the diameter of screw growing and spiral rising. Interestingly, the celluloses with chain number N of 4, 6, 24 and 36 do show right-hand twisting. On the contrast, the celluloses with N of 8, 12, 16 chains are left-hand twisting. These simulations indicate that the cellulose with chain number larger than 36 will break down to two parts. Besides, the result indicates that 36-chains cellulose model is the most stable among all models. Furthermore, the Lennard-Jones potential determines the secondary structure. In addition, an equation was set up to analyze the twisting structure.展开更多
基金Supported by"Ecological Basic Research of Good Quality Tobacco Leaf with Middle Odor Type"of Major Special Project of China Tobacco Corporation for Tobacco Leaf with Good Quality(TS-02-20110012)~~
文摘In order to study the correlations among quality indexes of tobacco leaf and contents of cellulose and lignin in upper leaves of flue-cured tobacco, 48 B2F flue-cured tobacco samples in seven counties of Wulin mountain area in 2011 and 2012 were used as test materials to measure the contents of cellulose and lignin in tobacco leaves and analyze the differences among varieties and between years. Meanwhile, correlations among contents of cellulose and lignin and appearance quality, physical characteristics, general chemical components and indexes of senso- ry quality were studied. The results showed that the contents of cellulose and lignin had no significant difference among years and varieties. Cellulose content was sig- nificantly correlated with some indexes of appearance qualities, physical indexes, general chemical compositions and sensory qualities. Lignin content was significantly correlated with grayness and oil content but not other quality indexes of tobacco leaf. It could be seen that the differences of cellulose and lignin contents between different years and among varieties were not significant. Cellulose content was closely correlated with quality indexes of tobacco leaf while lignin content had a small effect on tobacco leaf quality.
基金Supported by Natural Science Foundation of Tianjin (No. 03380211, 043610611).
文摘Study on oxidizing cellulose to 2.3-dialdehyde cellulose by sodium periodate (NalO4) was carried out. The effects of reaction conditions such as pH of solution, temperature, oxidant concentration, oxidation time. the particle size of 2,3-dialdehyde cellulose and alkali treatment temperature on the dialdehyde concentration ot cellulose were investigated in detail, The results show that the aldehyde group content was created while reaction temperature and alkali treatment temperature increased. The most principal factors affecting the aldehyde group content of 2,3-dialdehyde cellulose were found out and the best oxidation conditions were as follows: the pH was 2. the reaction temperature was 45℃. the mass ratio of cellulose to NalO4 was 1/2, the reaction time was 4 h, the alkali treatment temperature was 70℃ and smaller particle size was 0.80 mm.
基金Supported by the National Natural Science Foundation of China (No. 50176046)Guangdong Government Natural Science Foundation (No. 003045)The experiments in the paper were finished in Zhejiang University.
文摘A detailed mechanism analysis of cellulose pyrolysis was carried out according to the previous experimental results. On the basis of the Brodio-Shafizadeh model, a modified two-stage model was proposed to simulate the formation and decomposition of active cellulose (AC) and several main organic compounds, such as levoglucosan (LG), hydroxyl-acetaldehyde (HAA), acetol and furfural etc. During pryolysis, the temperature rise of cellulose can be divided into three stages. In the second stage, cellulose undergoes a main decomposition process in which the reaction temperature remains rather low because of the endothermic cracking of glucosidic bond of AC during the formation of LG. The components density of bio-oil, including LG and other competitive compounds, increased rapidly with the increase of temperature during the first stage. However, in the main decomposition process, LG density in bio-oil had an obvious decrease, while the competitive products appeared to increase gradually, which means the ring-opening and reforming reaction of pyranoid ring are superior to LG formation in high temperature.The secondary reaction of volatile components occurs largely in gaseous phase rather than in the solid phase. Short residence time of volatile materials in high temperature region will be advantageous to a high production of LG,which may otherwise decompose quickly under high temperature. An optimum yield of LG could be obtained when radiant source temperature is in the range of 730---920K and gas residence time is less than 1 s. In addition, the reaction temperature has a stronger effect than gas residence time on the formation of HAA, acetol, formaldehyde and furfural etc.
基金National Natural Science Foundation of China (No20674017)
文摘Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly( styrener-acrylonitrile)-b- poly ( 1, 1, 2, 2-tetrahydroperfluorooctyl methacrylate) (PSAN-b-PFOMA), as steric stabilizers. The structure and the particle morphology of the product were characterised by FT-IR and SEM. In addition, the effects of the stabilizer on the surface properties of the products were investigated in detail. Results indicate that the surface free energy of the poly (AN-r-VAc) (PAVAc) film decreases dramatically because of the existence of the stabilizer. And, when the initial concentration of the monomer was 10% (the mass (g) of monomer to the volume (mL) of ScCO2 ) the optimal concentration of the stabilizer is about 5% (w/w% to monomers).
基金Supported by the National Natural Science Foundation of China(51276166)the National Basic Research Program of China(2013CB228101)the National Science and Technology Supporting Plan Through Contract(2015BAD15B06)
文摘The structural evolution of the chars from pyrolysis of biomass components (cellulose, hemicellulose and lignin) in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the C content increased at the expense of H and O contents during the chars formation. The values of AH/C/ZSO/c for the formation of cellulose and hemicellulose chars were close to 2, indicating that dehydration was the dominant reaction. Meanwhile, the value was more than 3 for lignin char formation, suggesting that the occurrence of demethoxylation was prevalent. FTIR and XRD analyses further disclosed that the cellulose pyrolysis needed to break down the stable crystal structure prior to the severe depolymerization. As for hemicellulose and lignin pyrolysis, the weak branches and linkages decomposed firstly, followed by the major decomposition. After the devolatilization at the main pyrolysis stage, the three components encountered a slow carbonization process to form condensed aromatic chars. The SEM results showed that the three components underwent different devolatilization behaviors, which induced various surface mornhologies of the chars.
文摘The scientific concept of probiotics has been widely accepted throughout the last decades; consequently, its industrial production and commercialization have been increased. This is only the beginning since a recent global probiotic market analysis estimated an annual growth, boosted mainly by a rising request from the Asian and European consumer in the next 5 years. So the pharmaceutical industry needs to develop new dosage forms containing probiotic microorganisms in order to offer consumers a variety of products. Different kinds of matrix tablets with Lactobacillus coryniformis CECT 5711 were designed to protect this strain from the technological process and harsh gastrointestinal conditions up until their arrival in the gut, as well as environmental conditions during their storage. With this aim, various retarding polymers were combined so as to get controlled release tablets. All formulations were evaluated in terms of technological processability, bacterial viability and stability. Finally, an optimal formulation with Methocel K-15 M EP, Eudragit L-100 and alginate sodium, which contain Lactobacillus coryniformis CECT 5711, was selected due to the fact that it assured an excellent survival of the microorganisms after their exposition to all conditions mentioned above, besides it will be able to improve human's health.
文摘The secondary structure of different Iβ cellulose was analyzed by a molecular dynamics sim- ulation with MARTINI coarse-grained force field, where each chain of the cellulose includes 40 D-glucoses units. Calculation gives a satisfied description about the secondary structure of the cellulose. As the chain number increasing, the cellulose becomes the form of a helix, with the diameter of screw growing and spiral rising. Interestingly, the celluloses with chain number N of 4, 6, 24 and 36 do show right-hand twisting. On the contrast, the celluloses with N of 8, 12, 16 chains are left-hand twisting. These simulations indicate that the cellulose with chain number larger than 36 will break down to two parts. Besides, the result indicates that 36-chains cellulose model is the most stable among all models. Furthermore, the Lennard-Jones potential determines the secondary structure. In addition, an equation was set up to analyze the twisting structure.