The sol-gel transition of methylcellulose (MC) solution in the presence of NaCl and hexade- cyltrimethylammonium bromide (HTAB), together with MC/NaCl solution in the presence of HTAB and MC/HATB solution in the p...The sol-gel transition of methylcellulose (MC) solution in the presence of NaCl and hexade- cyltrimethylammonium bromide (HTAB), together with MC/NaCl solution in the presence of HTAB and MC/HATB solution in the presence of NaCl, was investigated by the rheological measurements. It has been found that the sol-gel transition temperature of MC solution decreases linearly with the concentration of NaCl in solution but increases linearly with the concentration of HTAB in solution, respectively. However, the sol-gel transition temperature of MC/NaCl solution in the presence of HTAB keeps the same value, independent of the concentration of HTAB in solution. On the other hand, the sol-gel transition temperature of MC/HTAB solution decreases linearly with the concentration of NaCl in solution. The experimental results suggest that, for MC/NaCl solution in the presence of HTAB, the salt- induced spherical micelles of HTAB should have formed in bulk solution. For MC solution in the absence of NaC1, no spherical micelles have been formed in bulk solution, though the concentration of HTAB in our experiment is almost one order of magnitude higher than the critical mieelle concentration of HTAB in polymer-free solution. In fact, due to adsorption of HTAB on MC chains, the realconcentration of HTAB in bulk solution, is much less than the apparent concentration of HTAB dissolved in MC solution.展开更多
The gel filtration was carried out for purification of cellulase. The influences of chromatographic parameters on the resolution were studied to determine the optimal conditions for purification. The purified endogluc...The gel filtration was carried out for purification of cellulase. The influences of chromatographic parameters on the resolution were studied to determine the optimal conditions for purification. The purified endoglucanase was obtained by gel filtration by Superdex 75 prep grade with an activity recovery of 92.8% and the purification factor 4.2. The sample volume should be below 6% of the column bed volume and the column bed height L≥12.0 cm. The optimum catalysis temperature and pH for the enzyme were 55 ℃ and 4.5—5.0, respectively. The cellulase was stable at pH ranging from 4.0 to 6.0 and temperature below 60 ℃.展开更多
Catalytic degradation of cellulose to chemicals is an attracting topic today for the conver- sion of biomass, and the development of novel catalysts is a key point. Since metal-organic frameworks (MOFs) possess unif...Catalytic degradation of cellulose to chemicals is an attracting topic today for the conver- sion of biomass, and the development of novel catalysts is a key point. Since metal-organic frameworks (MOFs) possess uniform, continuous, and permeable channels, they are valu- able candidate as catalysts. Here, a new 3D MOF/graphene catalyst was prepared by in situ growth of the zeolitic imidazolate frameworks (ZIF-8) nanoparticles inside the pore of an as-formed 3D reduced graphene oxide (rGO) hydrogel. The ZIF-8/rGO nanocomposite owns both micropores and mesopores with large specific surface area and plenty of acids sites, which is an idea catalyst for biomass degradation. Cellulose was dissolved in allmline aqueous solution at first, and then it was degraded efficiently over the new catalyst under hydrothermal condition. The conversion reaches 100% while the main products are formic acid with a maximum yield of 93.66%. In addition, the catalyst can be reused with high activity.展开更多
Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure an...Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy,ultraviolet-visible spectrometry, N_2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.展开更多
The energy crisis and environmental pollution are serious challenges that humanity will face for the long-term. Despite tremendous efforts, the development of environmentally friendly methods to fabricate new energy m...The energy crisis and environmental pollution are serious challenges that humanity will face for the long-term. Despite tremendous efforts, the development of environmentally friendly methods to fabricate new energy materials is still challenging. Here we report, for the first time, a new strategy to fabricate various doped carbon nanofiber (CNF) aerogels by pyrolysis of bacterial cellulose (BC) pellicles which had adsorbed or were dyed with different toxic organic dyes. The proposed strategy makes it possible to remove the toxic dyes from waste-water and then synthesize doped CNF aerogels using the dyed BC pellicles as precursors. Compared with other reported processes for preparing heteroatom doped carbon (HDC) nanomaterials, the present synthetic method has some significant advantages, such as being green, general, low-cost and easily scalable. Moreover, the as-prepared doped CNF aerogels exhibit great potential as electrocatalysts for the oxygen reduction reaction (ORR) and as electrode materials for supercapacitors.展开更多
文摘The sol-gel transition of methylcellulose (MC) solution in the presence of NaCl and hexade- cyltrimethylammonium bromide (HTAB), together with MC/NaCl solution in the presence of HTAB and MC/HATB solution in the presence of NaCl, was investigated by the rheological measurements. It has been found that the sol-gel transition temperature of MC solution decreases linearly with the concentration of NaCl in solution but increases linearly with the concentration of HTAB in solution, respectively. However, the sol-gel transition temperature of MC/NaCl solution in the presence of HTAB keeps the same value, independent of the concentration of HTAB in solution. On the other hand, the sol-gel transition temperature of MC/HTAB solution decreases linearly with the concentration of NaCl in solution. The experimental results suggest that, for MC/NaCl solution in the presence of HTAB, the salt- induced spherical micelles of HTAB should have formed in bulk solution. For MC solution in the absence of NaC1, no spherical micelles have been formed in bulk solution, though the concentration of HTAB in our experiment is almost one order of magnitude higher than the critical mieelle concentration of HTAB in polymer-free solution. In fact, due to adsorption of HTAB on MC chains, the realconcentration of HTAB in bulk solution, is much less than the apparent concentration of HTAB dissolved in MC solution.
基金Supported by the National Natural Science Foundation of China (No. 29736180).
文摘The gel filtration was carried out for purification of cellulase. The influences of chromatographic parameters on the resolution were studied to determine the optimal conditions for purification. The purified endoglucanase was obtained by gel filtration by Superdex 75 prep grade with an activity recovery of 92.8% and the purification factor 4.2. The sample volume should be below 6% of the column bed volume and the column bed height L≥12.0 cm. The optimum catalysis temperature and pH for the enzyme were 55 ℃ and 4.5—5.0, respectively. The cellulase was stable at pH ranging from 4.0 to 6.0 and temperature below 60 ℃.
文摘Catalytic degradation of cellulose to chemicals is an attracting topic today for the conver- sion of biomass, and the development of novel catalysts is a key point. Since metal-organic frameworks (MOFs) possess uniform, continuous, and permeable channels, they are valu- able candidate as catalysts. Here, a new 3D MOF/graphene catalyst was prepared by in situ growth of the zeolitic imidazolate frameworks (ZIF-8) nanoparticles inside the pore of an as-formed 3D reduced graphene oxide (rGO) hydrogel. The ZIF-8/rGO nanocomposite owns both micropores and mesopores with large specific surface area and plenty of acids sites, which is an idea catalyst for biomass degradation. Cellulose was dissolved in allmline aqueous solution at first, and then it was degraded efficiently over the new catalyst under hydrothermal condition. The conversion reaches 100% while the main products are formic acid with a maximum yield of 93.66%. In addition, the catalyst can be reused with high activity.
基金supported by the National Natural Science Foundation of China (51273206, 51425307)
文摘Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy,ultraviolet-visible spectrometry, N_2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.
基金This work is supported by the Ministry of Science and Technology of China (Grants 2010CB934700, 2013CB933900, 2014CB931800), the National Natural Science Foundation of China (Grants 21431006, 91022032, 91227103, 21061160492, J1030412), the Chinese Academy of Sciences (Grant KJZD-EW- M01-1), and Hainan Province Science and Technology Department (CXY20130046) for financial support. We thank Ms. C. Y. Zhong for kindly providing purified bacterial cellulose pellicles.
文摘The energy crisis and environmental pollution are serious challenges that humanity will face for the long-term. Despite tremendous efforts, the development of environmentally friendly methods to fabricate new energy materials is still challenging. Here we report, for the first time, a new strategy to fabricate various doped carbon nanofiber (CNF) aerogels by pyrolysis of bacterial cellulose (BC) pellicles which had adsorbed or were dyed with different toxic organic dyes. The proposed strategy makes it possible to remove the toxic dyes from waste-water and then synthesize doped CNF aerogels using the dyed BC pellicles as precursors. Compared with other reported processes for preparing heteroatom doped carbon (HDC) nanomaterials, the present synthetic method has some significant advantages, such as being green, general, low-cost and easily scalable. Moreover, the as-prepared doped CNF aerogels exhibit great potential as electrocatalysts for the oxygen reduction reaction (ORR) and as electrode materials for supercapacitors.