期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于约减支持向量机的相关反馈图像检索算法
1
作者 齐亚莉 李业丽 《计算机应用与软件》 CSCD 2011年第8期149-151,共3页
针对支持向量机在大规模数据集上的低效率,提出了基于约减支持向量机的相关反馈图像检索算法。首先采用约减支持向量机训练初始分类器,以该分类器作为检索模型,根据检索结果进行相关反馈,从而进行再检索。实验结果表明,随着反馈次数的增... 针对支持向量机在大规模数据集上的低效率,提出了基于约减支持向量机的相关反馈图像检索算法。首先采用约减支持向量机训练初始分类器,以该分类器作为检索模型,根据检索结果进行相关反馈,从而进行再检索。实验结果表明,随着反馈次数的增加,检索到的相关图像也会增加;另外相对传统的基于向量机的方法,数据集规模越大,基于约减支持向量机的算法在时间上的优势越明显。 展开更多
关键词 约减支持向量机 相关反馈 图像检索
下载PDF
DIMENSIONALITY REDUCTION BASED ON SVM AND LDA,AND ITS APPLICATION TO CLASSIFICATION TECHNIQUE 被引量:1
2
作者 杨波 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期306-312,共7页
Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on S... Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method. 展开更多
关键词 classification information pattern recognition dimensionality reduction (DR) support vectormachine (SVM) linear discriminant analysis (LDA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部