期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
含重复单元共轭分子本征方程的约化定理 被引量:1
1
作者 郑元庆 《分子科学学报》 CAS CSCD 2000年第1期59-61,共3页
In this paper, the method of bent-bond is raised and expanded. It can obtain the reduced theorems of eigenequation of conjugate systems with repeated units by using projection operators of symmetry plane and symmetry ... In this paper, the method of bent-bond is raised and expanded. It can obtain the reduced theorems of eigenequation of conjugate systems with repeated units by using projection operators of symmetry plane and symmetry axis one after another. On certain condition, it can apply to the two-dimensional and three-dimensional conjugate systems. 展开更多
关键词 共轭分子 本征方程 约化定理 分子轨道理论
下载PDF
球面子流形的一个余维可约化定理
2
作者 何太平 《四川师范大学学报(自然科学版)》 CAS CSCD 1998年第4期410-414,共5页
设Sn+p(1)是n+p维单位球面,Mn为其紧致子流形,本文从两个方面推广了Yau[Am.J.Math.,1974,96:346;1995,97:76]证明的一个余维可约化定理:(i)只假定Mn具有单位平行平均曲率;
关键词 单位球面 全测地子流形 子流形 余维可约化定理
下载PDF
A Restriction Theorem on the Reduced Product Heisenberg Group
3
作者 何建勋 《Chinese Quarterly Journal of Mathematics》 CSCD 1999年第2期59-62, ,共4页
In this paper,we give the Plancherel formula on the reduced product Heisenberg group,and obtain a restriction theorem on this group.
关键词 reduced product Heisenberg group Plancherel formula restriction theorem
下载PDF
广义Toda链的τ-函数解与表示论
4
作者 庄大蔚 钱敏 王伟 《中国科学(A辑)》 CSCD 1992年第11期1161-1168,共8页
本文由Semenov-Tian-Shansky 约化定理所给出的完全可积Hamilton 系统的求解框架出发,利用Lie群、Lie代数表示论的方法;求得了广义Toda链的τ-函数解.
关键词 表示论 ι-函数 约化定理 Toda链
原文传递
Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation 被引量:2
5
作者 冯连莉 田守富 +1 位作者 王秀彬 张田田 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第9期321-329,共9页
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K... In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. 展开更多
关键词 time-fractional Fordy-Gibbons equation Lie symmetry method symmetry reduction exact solution conservation laws
原文传递
Some Errors in the Paper “Programming with Semilocally Convex Functions”
6
作者 Mao Erwan (Dept. of Math., Hebei Normal University, Shijiazhuang 050016) (Institute of System Science, Academia Sinica, Beijing 100080) 《Journal of Mathematical Research and Exposition》 CSCD 1998年第1期60-62,共3页
In this paper, we illustrate some errors with some concrete counterexample.
关键词 locally starshaped set semilocally convex functionson a locally starshaped set S-semilocally convex functions on a locally starshaped set separation theorem theorem of the alternatives.
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部