For a special coupled Korteweg de Vries (KdV) system, its similarity solutions and reduction equations are obtained by the Clarkson and Kruskal's direct method. In addition, its new explicit soliton solutions and t...For a special coupled Korteweg de Vries (KdV) system, its similarity solutions and reduction equations are obtained by the Clarkson and Kruskal's direct method. In addition, its new explicit soliton solutions and traveling wave solutions are found by the deformation and mapping method.展开更多
In this paper we describe the decomposition problem of a special kind of Ap,n,4p-5 polyhedra by using the associated matrices and their admissible operations.
A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings. By a method similar to the above one, the arthors give a symplectic reduction method for t...A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings. By a method similar to the above one, the arthors give a symplectic reduction method for the Poisson action of Poisson Lie groups on symplectic manifolds, also without using the existence of momentum mappings. The symplectic reduction method for momentum mappings is thus a special case of the above results.展开更多
基金Supported by Natural Science Foundations of Jiangxi Province under Grant Nos. 2008GZS0045 and 2009GZW0026
文摘For a special coupled Korteweg de Vries (KdV) system, its similarity solutions and reduction equations are obtained by the Clarkson and Kruskal's direct method. In addition, its new explicit soliton solutions and traveling wave solutions are found by the deformation and mapping method.
文摘In this paper we describe the decomposition problem of a special kind of Ap,n,4p-5 polyhedra by using the associated matrices and their admissible operations.
文摘A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings. By a method similar to the above one, the arthors give a symplectic reduction method for the Poisson action of Poisson Lie groups on symplectic manifolds, also without using the existence of momentum mappings. The symplectic reduction method for momentum mappings is thus a special case of the above results.