期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
约束下多子女家系数据重组率的最大似然估计 被引量:1
1
作者 周影 韩国牛 +2 位作者 史宁中 冯荣锦 郭建华 《中国科学:数学》 CSCD 北大核心 2010年第10期971-984,共14页
本文针对相型信息未知的三回交家系,讨论了在自然的序约束下重组率的估计问题.考虑了多后代数据的后代表型分类问题,给出了后代表型分类数的一个具体公式.基于表型分类所得数据,采用约束EM算法(REM)估计了两位点重组率.鉴于交换干扰的... 本文针对相型信息未知的三回交家系,讨论了在自然的序约束下重组率的估计问题.考虑了多后代数据的后代表型分类问题,给出了后代表型分类数的一个具体公式.基于表型分类所得数据,采用约束EM算法(REM)估计了两位点重组率.鉴于交换干扰的存在可能会影响到基因定位的精度,基于该估计,进一步考虑了有关生物体基因组中交换干扰的统计推断问题.实例和模拟研究均显示REM算法要优于无约束算法,并证实了多后代家庭会提供更多连锁信息这一观点. 展开更多
关键词 约束参数问题 连锁分析 重组率 约束EM算法
原文传递
New semidefinite programming relaxations for box constrained quadratic program 被引量:3
2
作者 XIA Yong 《Science China Mathematics》 SCIE 2013年第4期877-886,共10页
We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as se... We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation. 展开更多
关键词 box constrained quadratic program Lagrangian dual semidefinite programming D.C. optimiza- tion lower bound ZONOTOPE
原文传递
An M-Objective Penalty Function Algorithm Under Big Penalty Parameters
3
作者 ZHENG Ying MENG Zhiqing SHEN Rui 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第2期455-471,共17页
Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.... Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.In this paper,a novel penalty function(called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed.Based on the M-objective penalty function,an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems,with its convergence proved under some conditions.Furthermore,numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters,and is efficient in choosing a penalty parameter in a large range in Matlab software. 展开更多
关键词 ALGORITHM constrained optimization problem M-objective penalty function stability.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部