We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as se...We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation.展开更多
Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems....Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.In this paper,a novel penalty function(called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed.Based on the M-objective penalty function,an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems,with its convergence proved under some conditions.Furthermore,numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters,and is efficient in choosing a penalty parameter in a large range in Matlab software.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 11001006 and 91130019/A011702)the Fund of State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2011ZX-15.)
文摘We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation.
基金supported by the National Natural Science Foundation of China under Grant No.11271329
文摘Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.In this paper,a novel penalty function(called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed.Based on the M-objective penalty function,an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems,with its convergence proved under some conditions.Furthermore,numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters,and is efficient in choosing a penalty parameter in a large range in Matlab software.