In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
This paper studies a family of the local convergence of the improved secant methods for solving the nonlinear equality constrained optimization subject to bounds on variables. The Hessian of the Lagrangian is approxim...This paper studies a family of the local convergence of the improved secant methods for solving the nonlinear equality constrained optimization subject to bounds on variables. The Hessian of the Lagrangian is approximated using the DFP or the BFGS secant updates. The improved secant methods are used to generate a search direction. Combining with a suitable step size, each iterate switches to trial step of strict interior feasibility. When the Hessian is only positive definite in an affine null subspace, one shows that the algorithms generate the sequences converging q-linearly and two-step q-superlinearly. Yhrthermore, under some suitable assumptions, some sequences generated by the algorithms converge locally one-step q-superlinearly. Finally, some numerical results are presented to illustrate the effectiveness of the proposed algorithms.展开更多
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
基金supported by the partial supports of the National Science Foundation under Grant No.10871130the Ph.D. Foundation under Grant No.20093127110005 of Chinese Education Ministry
文摘This paper studies a family of the local convergence of the improved secant methods for solving the nonlinear equality constrained optimization subject to bounds on variables. The Hessian of the Lagrangian is approximated using the DFP or the BFGS secant updates. The improved secant methods are used to generate a search direction. Combining with a suitable step size, each iterate switches to trial step of strict interior feasibility. When the Hessian is only positive definite in an affine null subspace, one shows that the algorithms generate the sequences converging q-linearly and two-step q-superlinearly. Yhrthermore, under some suitable assumptions, some sequences generated by the algorithms converge locally one-step q-superlinearly. Finally, some numerical results are presented to illustrate the effectiveness of the proposed algorithms.