期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
约束哈密顿系统在相空间中的精确不变量与绝热不变量 被引量:6
1
作者 张毅 《物理学报》 SCIE EI CAS CSCD 北大核心 2002年第11期2417-2422,共6页
研究小干扰力作用下约束哈密顿系统对称性的摄动问题 .建立了非保守约束哈密顿系统的正则方程 ,在增广相空间中研究了系统的对称性与精确不变量 .基于力学系统的高阶绝热不变量的概念 ,给出了系统的各阶绝热不变量的形式及存在条件 。
关键词 相空间 精确不变量 绝热不变量 约束哈密顿系统 对称性 摄动 力学系统 量子论
原文传递
A New Hierarchy Soliton Equations Associated with a Schrdinger Type Spectral Problem and the Corresponding Finite-dimensional Integrable System 被引量:1
2
作者 XING Xiu-zhi WU Jing-zhu GENG Xian-guo 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期220-228,共9页
By introducing a SchrSdinger type spectral problem with four potentials, we derive a new hierarchy nonlinear evolution equations. Through the nonlinearization of eigenvalue problems, we get a new finite-dimensional Ha... By introducing a SchrSdinger type spectral problem with four potentials, we derive a new hierarchy nonlinear evolution equations. Through the nonlinearization of eigenvalue problems, we get a new finite-dimensional Hamiltonian system, which is completely integrable in the Liouville sense. 展开更多
关键词 lenard operators soliton hierarchy Bargam constraint Hamiltonian system
下载PDF
Treatment of Dirac Fields in Light—Front Coordinates by Dirac‘s Method for Constrained Hamiltonian Systems
3
作者 YANGZe-Sen LIUPeng 等 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第1期55-58,共4页
Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
关键词 Dirac fields in light-front coordinates Dirac's method for constrained Hamiltonian systems
下载PDF
An implicit symmetry constraint of the modified Korteweg-de Vries (mKdV) equation
4
作者 Ying YOU Jing YU Qiao-yun JIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1457-1462,共6页
In this paper, an implicit symmetry constraint is calculated and its associated binary nonlinearization of the Lax pairs and the adjoint Lax pairs is carried out for the modified Korteweg-de Vries (mKdV) equation. Aft... In this paper, an implicit symmetry constraint is calculated and its associated binary nonlinearization of the Lax pairs and the adjoint Lax pairs is carried out for the modified Korteweg-de Vries (mKdV) equation. After introducing two new inde-pendent variables, we find that under the implicit symmetry constraint, the spatial part and the temporal part of the mKdV equation are decomposed into two finite-dimensional systems. Furthermore we prove that the obtained finite-dimensional systems are Hamiltonian systems and completely integrable in the Liouville sense. 展开更多
关键词 Implicit symmetry constraint Completely integrable Hamiltonian system Modified Korteweg-de Vries (mKdV) equation
下载PDF
改进的半经典动力学模拟二苯乙烯光致顺反异构化反应 被引量:2
5
作者 雷依波 朱超原 +1 位作者 文振翼 林聖聖 《化学学报》 SCIE CAS CSCD 北大核心 2012年第17期1869-1876,共8页
发展了一种改进的半经典动力学模拟方法,并将其程序化用于气相二苯乙烯光致顺反异构化反应的机理研究.新的方法不仅采用e指数模型改进了原有Zhu-Nakamura理论中计算电子非绝热跃迁几率的计算方法,而且将约束哈密顿方法用于限制性分子动... 发展了一种改进的半经典动力学模拟方法,并将其程序化用于气相二苯乙烯光致顺反异构化反应的机理研究.新的方法不仅采用e指数模型改进了原有Zhu-Nakamura理论中计算电子非绝热跃迁几率的计算方法,而且将约束哈密顿方法用于限制性分子动力学模拟过程中.计算结果表明,采用此方法得到的统计平均的量子产率及反应机理与以前的实验与理论结果吻合较好,从而可以应用于全量子动力学方法无法进行的大分子体系的动力学研究. 展开更多
关键词 改进的半经典动力学模拟 约束哈密顿系统 Zhu-Nakamura理论 二苯乙烯顺反异构化 二维解析势能面
原文传递
Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations 被引量:1
6
作者 徐西祥 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第6期953-960,共8页
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability ... A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system. 展开更多
关键词 differential-difference equation Lax pair Hamiltonian form Binary nonliearization Bargmannsymmetry constraint integrable symplectic map
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部