近几年卷积神经网络作为深度学习最重要的技术,在图像分类、物体检测、语音识别等领域均有所建树。在此期间,由多层卷积神经网络组成的深度神经网络横空出世,在各种任务准确性方面具有显著提升。然而,神经网络的权重往往被限定在单精度...近几年卷积神经网络作为深度学习最重要的技术,在图像分类、物体检测、语音识别等领域均有所建树。在此期间,由多层卷积神经网络组成的深度神经网络横空出世,在各种任务准确性方面具有显著提升。然而,神经网络的权重往往被限定在单精度类型,使网络体积相较于特定硬件平台上的内存空间更大,且floating point 16、INT 8等单精度类型已无法满足现在一些模型推理的现实需求。为此,提出一种以子图为最小单位,通过判断相邻结点之间的融合关系,添加了丰富比特位的混合精度推理算法。首先,在原有单精度量化设计的搜索空间中增加floating point 16半精度的比特配置,使最终搜索空间变大,为寻找最优解提供更多机会。其次,使用子图融合的思想,通过整数线性规划将融合后的不同子图精度配置,根据模型大小、推理延迟和位宽操作数3个约束对计算图进行划分,使最后累积的扰动误差减少。最终,在ResNet系列网络上验证发现,所提模型精度相较于HAWQ V3的损失没超过1%的同时,相较于其他混合精度量化方法在推理速度方面得到了提升,在ResNet18网络中推理速度分别提升18.15%、19.21%,在ResNet50网络中推理速度分别提升13.15%、13.70%。展开更多
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi...Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.展开更多
文摘近几年卷积神经网络作为深度学习最重要的技术,在图像分类、物体检测、语音识别等领域均有所建树。在此期间,由多层卷积神经网络组成的深度神经网络横空出世,在各种任务准确性方面具有显著提升。然而,神经网络的权重往往被限定在单精度类型,使网络体积相较于特定硬件平台上的内存空间更大,且floating point 16、INT 8等单精度类型已无法满足现在一些模型推理的现实需求。为此,提出一种以子图为最小单位,通过判断相邻结点之间的融合关系,添加了丰富比特位的混合精度推理算法。首先,在原有单精度量化设计的搜索空间中增加floating point 16半精度的比特配置,使最终搜索空间变大,为寻找最优解提供更多机会。其次,使用子图融合的思想,通过整数线性规划将融合后的不同子图精度配置,根据模型大小、推理延迟和位宽操作数3个约束对计算图进行划分,使最后累积的扰动误差减少。最终,在ResNet系列网络上验证发现,所提模型精度相较于HAWQ V3的损失没超过1%的同时,相较于其他混合精度量化方法在推理速度方面得到了提升,在ResNet18网络中推理速度分别提升18.15%、19.21%,在ResNet50网络中推理速度分别提升13.15%、13.70%。
文摘Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.