A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent ...A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.展开更多
this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al....this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.展开更多
For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a sm...For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a smooth penalty method based on a class of smooth functions. The main feature of this method is that the global solution of the penalty function is not necessarily solved at each iteration, and under mild assumptions, the method is always feasible and efficient when the evaluation of the integral function is not very expensive. The global convergence property is obtained in the absence of any constraint qualifications, that is, any accumulation point of the sequence generated by the algorithm is the solution of the SIP. Moreover, the authors show a perturbation theorem of the method and obtain several interesting results. Furthermore, the authors show that all iterative points remain feasible after a finite number of iterations under the Mangasarian-Fromovitz constraint qualification. Finally, numerical results are given.展开更多
文摘A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.
基金Supported in part by NSFC(No.11961011)Guangxi Science and Technology Base and Talents Special Project(No.2021AC06001).
文摘this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.10971118, 10701047 and 10901096the Natural Science Foundation of Shandong Province under Grant Nos. ZR2009AL019 and BS2010SF010
文摘For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a smooth penalty method based on a class of smooth functions. The main feature of this method is that the global solution of the penalty function is not necessarily solved at each iteration, and under mild assumptions, the method is always feasible and efficient when the evaluation of the integral function is not very expensive. The global convergence property is obtained in the absence of any constraint qualifications, that is, any accumulation point of the sequence generated by the algorithm is the solution of the SIP. Moreover, the authors show a perturbation theorem of the method and obtain several interesting results. Furthermore, the authors show that all iterative points remain feasible after a finite number of iterations under the Mangasarian-Fromovitz constraint qualification. Finally, numerical results are given.